已知函數(shù)y=f(x),x∈R滿足f(x+1)=af(x),a是不為0的實(shí)常數(shù).
(1)若當(dāng)0≤x≤1時(shí),f(x)=x(1-x),求函數(shù)y=f(x),x∈[0,1]的值域;
(2)在(1)的條件下,求函數(shù)y=f(x),x∈[n,n+1),n∈N的解析式;
(3)若當(dāng)0<x≤1時(shí),f(x)=3x,試研究函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?
若可能,求出a的取值范圍;若不可能,請說明理由.
解:(1)∵
,∴
.
(2)當(dāng)n≤x≤n+1(n≥0,n∈Z)時(shí),f
n(x)=af
n-1(x-1)=a
2f
n-1(x-2)═a
nf
1(x-n),
∴f
n(x)=a
n(x-n)(n+1-x).
(3)當(dāng)n≤x≤n+1(n≥0,n∈Z)時(shí),f
n(x)=af
n-1(x-1)=a
2f
n-1(x-2)═a
nf
1(x-n),
∴f
n(x)=a
n•3
x-n;
顯然f
n(x)=a
n•3
x-n,x∈[n,n+1],n≥0,n∈Z當(dāng)a>0時(shí)是增函數(shù),
此時(shí)∴f
n(x)∈[a
n,3a
n],
若函數(shù)y=f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),則必有a
n+1≥3a
n,解得:a≥3;
顯然當(dāng)a<0時(shí),函數(shù)y=f(x)在區(qū)間[0,+∞)上不是單調(diào)函數(shù);
所以a≥3.
分析:(1)先用配方法求出對稱軸,明確單調(diào)性,然后再求值域.
(2)在區(qū)間[n,n+1)上取變量,利用“f(x+1)=af(x)”逐步將變量轉(zhuǎn)化到區(qū)間[0,1]上,用f(x)=x(1-x)求解.
(3)由(2)知:f
n(x)=a
n•3
x-n,易知f
n(x)=a
n•3
x-n,x∈[n,n+1],n≥0,n∈Z當(dāng)a>0時(shí)是增函數(shù),由“函數(shù)y=f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù)”,有a
n+1≥3a
n求解即可.
點(diǎn)評:本題主要考查求相應(yīng)區(qū)間上的解析式問題,這類題,要通過條件或函數(shù)的性質(zhì),將相應(yīng)區(qū)間上的變量轉(zhuǎn)化到已知區(qū)間上去,利用已知區(qū)間上的解析式來求解.考查比較多的是用奇偶性和周期性來轉(zhuǎn)化求解.