【題目】如圖,直三棱柱中,,,,,點(diǎn)在線段上.
(Ⅰ)證明;
(Ⅱ)若是中點(diǎn),證明平面;
(Ⅲ)當(dāng)時,求二面角的余弦值.
【答案】(1)見解析(2)
【解析】試題分析:以 為原點(diǎn)建立空間直角坐標(biāo)系 ,(Ⅰ)分別求出向量的坐標(biāo)根據(jù)可得結(jié)果;(Ⅱ)求出平面 的法向量,利用向量法能證明 平面 ;(Ⅲ)求出平面 的法向量和平面 的法向量,利用空間向量法夾角余弦公式能求出二面角 的余弦值.
試題解析:(Ⅰ)證明:如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.則,,,,.
,,
,所以.
(Ⅱ)解法一:
設(shè)平面的法向量,
由,
且,
令得,
所以,
又平面,所以平面;
解法二:證明:連接,交于,.
因?yàn)橹比庵?/span>,是中點(diǎn),
所以側(cè)面為矩形,為的中位線.
所以,
因?yàn)?/span>平面,平面,
所以平面.
(Ⅲ)由(Ⅰ)知,
設(shè),
因?yàn)辄c(diǎn)在線段上,且,即.
所以,,.
所以,.
平面的法向量為.
設(shè)平面的法向量為,
由,,得,
所以,,.
設(shè)二面角的大小為,
所以.
所以二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知圓的圓心在直線上,且過點(diǎn),與直線相切.
()求圓的方程.
()設(shè)直線與圓相交于,兩點(diǎn).求實(shí)數(shù)的取值范圍.
()在()的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點(diǎn)E為SD的中點(diǎn).
(1)求證:直線SB∥平面ACE
(2)求證:直線AC⊥平面SBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“五一”假期期間,某餐廳對選擇、、三種套餐的顧客進(jìn)行優(yōu)惠。對選擇、套餐的顧客都優(yōu)惠10元,對選擇套餐的顧客優(yōu)惠20元。根據(jù)以往“五一”假期期間100名顧客對選擇、、三種套餐的情況得到下表:
選擇套餐種類 | |||
選擇每種套餐的人數(shù) | 50 | 25 | 25 |
將頻率視為概率.
(I)若有甲、乙、丙三位顧客選擇某種套餐,求三位顧客選擇的套餐至少有兩樣不同的概率;
(II)若用隨機(jī)變量表示兩位顧客所得優(yōu)惠金額的綜合,求的分布列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):
①甲地:5個數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;
②乙地:5個數(shù)據(jù)的中位數(shù)為27,總體均值為24;
③丙地:5個數(shù)據(jù)的中有一個數(shù)據(jù)是32,總體均值為26,總體方差為10.8;
則肯定進(jìn)入夏季的地區(qū)的有( )
A. ①②③ B. ①③ C. ②③ D. ①
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(x1 , y1),點(diǎn)Q的坐標(biāo)為(x2 , y2),且x1≠x2 , y1≠y2 , 若P,Q為某個矩形的兩個頂點(diǎn),且該矩形的邊均與某條坐標(biāo)軸垂直,則稱該矩形為點(diǎn)P,Q的“相關(guān)矩形”,如圖為點(diǎn)P,Q的“相關(guān)矩形”示意圖.
(1)已知點(diǎn)A的坐標(biāo)為(1,0),
①若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)A,B的“相關(guān)矩形”的面積;
②點(diǎn)C在直線x=3上,若點(diǎn)A,C的“相關(guān)矩形”為正方形,求直線AC的表達(dá)式;
(2)⊙O的半徑為 ,點(diǎn)M的坐標(biāo)為(m,3),若在⊙O上存在一點(diǎn)N,使得點(diǎn)M,N的“相關(guān)矩形”為正方形,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA= acosB. (Ⅰ)求角B的大。
(Ⅱ)若b=3,sinC=2sinA,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com