精英家教網 > 高中數學 > 題目詳情
已知等差數列{an}為遞增數列,且a2,a5是方程x2-12x+27=0的兩根,數列{bn}的前n項和;
(1)求數列{an}和{bn}的通項公式;
(2)若,sn為數列{cn}的前n項和,證明:sn<1
【答案】分析:(1)由韋達定理求出a2、a5,由數列是等差數列,求出數列an的公差和通項公式;由,求出數列bn的通項公式;
(2)把數列an、bn的通項公式代入數列cn中,得出數列cn的通項公式并化簡,從而求出其前項和,進而證明不等式.
解答:解:(Ⅰ)由題意得a2=3,a5=9
公差   (2分)
所以an=a2+(n-2)d=2n-1  (4分)
   
(6分)
所以(8分)

(Ⅱ)由(Ⅰ)得
∴sn=c1+c2+c3++cn=
=
∴Sn<1
點評:由數列前n項和求通項公式時,容易忽略n=1的情況;裂項求和也是重點方法,此題很好,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列{an},公差d不為零,a1=1,且a2,a5,a14成等比數列;
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an3n-1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足a2=0,a6+a8=-10
(1)求數列{an}的通項公式;     
(2)求數列{|an|}的前n項和;
(3)求數列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知等差數列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若{an}為遞增數列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案