18.已知$\overrightarrow{a}$=(1,-3,1),$\overrightarrow$=(-1,1,-3),則|$\overrightarrow{a}$-$\overrightarrow$|=6.

分析 根據(jù)空間向量的坐標(biāo)運(yùn)算,求出$\overrightarrow{a}$-$\overrightarrow$,再求它的模長(zhǎng).

解答 解:∵$\overrightarrow{a}$=(1,-3,1),$\overrightarrow$=(-1,1,-3),
∴$\overrightarrow{a}$-$\overrightarrow$=(2,-4,4),
∴|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{{2}^{2}{+(-4)}^{2}{+4}^{2}}$=6.
故答案為:6.

點(diǎn)評(píng) 本題考查了空間向量的坐標(biāo)運(yùn)算與求模長(zhǎng)的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若命題p是假命題,命題q是真命題,則( 。
A.p∧q是真命題B.p∨q是假命題C.?p是假命題D.¬q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知命題:“若曲線$\frac{x^2}{m}+\frac{y^2}{n}=1$為橢圓,則mn>0”則原命題、逆命題、否命題、逆否命題這四個(gè)命題中,真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系中,曲線C的參數(shù)方程為,$\left\{\begin{array}{l}{x=\sqrt{5}cosφ}\\{y=\sqrt{15}sinφ}\end{array}\right.$(ϕ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-\frac{1}{2}t}\\{y=\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)P的極坐標(biāo)為$(\sqrt{3},\frac{π}{2})$.
(Ⅰ)求點(diǎn)P的直角坐標(biāo),并求曲線C的普通方程;
(Ⅱ)設(shè)直線l與曲線C的兩個(gè)交點(diǎn)為A,B,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)$y={({\frac{1}{2}})^x}-2$的圖象一定經(jīng)過(guò)(  )
A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈[-3,-2]時(shí),f(x)=x2+4x+3,則y=f[f(x)]+1在區(qū)間[-3,3]上的零點(diǎn)個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.4個(gè)D.6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.隨州市汽車配件廠,是生產(chǎn)某配件的專業(yè)廠家,每年投入生產(chǎn)的固定成本為40萬(wàn)元,每生產(chǎn)1萬(wàn)件該配件還需要再投入16萬(wàn)元,該廠信譽(yù)好,產(chǎn)品質(zhì)量過(guò)硬,該產(chǎn)品投放市場(chǎng)后供應(yīng)不求,若該廠每年生產(chǎn)該配件x萬(wàn)件,每萬(wàn)件的銷售收入為R(x)萬(wàn)元,且R(x)=$\left\{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{7400}{x}-\frac{40000}{{x}^{2}},x>40}\end{array}\right.$.
(1)寫出年利潤(rùn)關(guān)于年產(chǎn)量x(萬(wàn)件)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)件時(shí),該廠獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,某地區(qū)有7條南北向街道,5條東西街道,從A點(diǎn)走向B點(diǎn)最短的走法中,必須經(jīng)過(guò)C點(diǎn)的概率( 。
A.$\frac{3}{7}$B.$\frac{6}{7}$C.$\frac{3}{10}$D.$\frac{7}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案