1.復(fù)數(shù)z=a+bi(a,b∈R,b≥0),若|z|=$\sqrt{5}$,z+$\overline z$=2,則z的虛部是(  )
A.±2B.2C.2iD.1

分析 由復(fù)數(shù)z求出$\overline{z}$,然后由復(fù)數(shù)求模公式得到$|z|=\sqrt{{a}^{2}+^{2}}=\sqrt{5}$,再由z+$\overline z$=2求出a的值,把a(bǔ)代入復(fù)數(shù)求模公式即可得到b的值,則z的虛部可求.

解答 解:由z=a+bi(a,b∈R,b≥0),
得$\overline{z}=a-bi$.
則$|z|=\sqrt{{a}^{2}+^{2}}=\sqrt{5}$,①
z+$\overline z$=a+bi+a-bi=2a=2,
解得a=1.
把a(bǔ)=1代入①式解得b=2.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)求模公式的運(yùn)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知銳角α,β,γ滿足sinα+sinγ=sinβ,cosα-cosγ=cosβ,求α-β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若a>b>0,證明:a2+$\frac{1}{(a-b)b}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-y+3≥0\\ 1≤x≤3\\ y≥1\end{array}\right.$,則z=x+y的最大值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\overrightarrow a、\overrightarrow b$是非零向量且滿足($\overrightarrow a$-2$\overrightarrow b$)⊥$\overrightarrow a$,($\overrightarrow b$-2$\overrightarrow a$)⊥$\overrightarrow b$,則$\overrightarrow a$與$\overrightarrow b$的夾角是( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若a、b∈R,下列4個(gè)命題:①a+b≥2$\sqrt{ab}$;②a5+b5>a3b2+a2b3;③a2+b2≥2(a+b-1);④$\frac{a}$+$\frac{a}$≥2,其中真命題的序號(hào)是③(寫出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題中,正確的序號(hào)是(2).
(1)存在x0>0,使得x0<sinx0
(2)若sinα≠$\frac{1}{2}$,則α≠$\frac{π}{6}$.
(3)“l(fā)na>lnb”是“10a>10b”的充要條件.
(4)若函數(shù)f(x)=x3+3ax2+bx+a2在x=-1有極值0,則a=2,b=9或a=1,b=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖所示,在△ABC中,D為BC的中點(diǎn),BP⊥DA,垂足為P,且$|{\overrightarrow{BP}}|=4$,則$\overrightarrow{BC}•\overrightarrow{BP}$=( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$=(3,4),則與$\overrightarrow{a}$方向相同的單位向量是( 。
A.($\frac{4}{5}$,$\frac{3}{5}$)B.($\frac{3}{5}$,$\frac{4}{5}$)C.(-$\frac{3}{5}$-,$\frac{4}{5}$)D.(4,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案