f(x)=x2-4x+3,當(dāng)f(x)<-2時(shí),x的取值范圍
分析:由f(x)<-2,解不等式即可.
解答:解:∵f(x)<-2,
∴x2-4x+3<-2,即x2-4x+5<0,
∵△=16-4×5=16-20=-4<0,
∴不等式的解集為空集.
故答案為:∅
點(diǎn)評:本題主要考查一元二次不等式的解法,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)a為常數(shù),函數(shù)f(x)=x2-4x+3.若f(x+a)為偶函數(shù),則a等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:如果函數(shù)y=f(x)在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b),滿足f(x0)=
f(b)-f(a)b-a
,則稱函數(shù)y=f(x)是[a,b]上的“平均值函數(shù)”,x0是它的一個均值點(diǎn).如y=x4是[-1,1]上的平均值函數(shù),0就是它的均值點(diǎn).
(1)判斷函數(shù)f(x)=-x2+4x在區(qū)間[0,9]上是否為平均值函數(shù)?若是,求出它的均值點(diǎn);若不是,請說明理由;
(2)若函數(shù)f(x)=-x2+mx+1是區(qū)間[-1,1]上的平均值函數(shù),試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+4x-1在[t,t+1]上的最大值為g(t),則g(t)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、設(shè)a為常數(shù),f(x)=x2-4x+3.若函數(shù)f(x+a)為偶函數(shù),則a=
2
;f(f(a))=
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)f(x)=x2-4x+1在[0,5]上的最大值與最小值之和是
3
3

查看答案和解析>>

同步練習(xí)冊答案