【題目】已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1、F2 , 這兩條曲線在第一象限的交點為P,△PF1F2 是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2 的取值范圍為

【答案】( ,+∞)
【解析】解:設橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得m+n=2a1
由雙曲線的定義可得m﹣n=2a2 ,
即有a1=5+c,a2=5﹣c,(c<5),
再由三角形的兩邊之和大于第三邊,可得2c+2c>10,
可得c> ,即有 <c<5.
由離心率公式可得e1e2= = = ,
由于1< <4,則有
則e1e2 的取值范圍為( ,+∞).
所以答案是:( ,+∞).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高二年級有甲、乙、丙三個班參加社會實踐活動,高二年級老師要分到各個班級帶隊,其中男女老師各一半,每次任選兩個老師,將其中一個老師分到甲班,如果這個老師是男老師,就將另一個老師分到乙班,否則就分到丙班,重復上述過程,直到所有老師都分到班級,則

A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師

C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a為實數(shù),函數(shù)f(x)=+a+a

(1)設t=,求t的取值范圖;

(2)把f(x)表示為t的函數(shù)h(t);

(3)設f (x)的最大值為M(a),最小值為m(a),記g(a)=M(a)-m(a)求g(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的方程為2kx2﹣2x﹣5k﹣2=0的兩個實數(shù)根一個小于1,另一個大于1,則實數(shù)k的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司采用招考方式引進人才,規(guī)定必須在,三個測試中任意選取兩個進行測試,若在這兩個測試點都測試合格,則可參加面試,否則不被錄用,已知考生在每測試個點試結果互不影響,若考生小李和小王起前來參加招考,小李在測試點測試合格的概率分別為,小王在上述三個測試點測試合格的概率都是.

(1)問小李選擇哪兩個測試點測試才能使得可以參加面試的可最大?說明理由;

(2)假設小李選測試點進行測試,小王選擇測試點進行測試,為兩人在各測試點測試合格的測試點個數(shù)之和,機變的分布列及數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,PA=AB=AD=2,四邊形ABCD滿足AB⊥AD,BC∥AD且BC=4,點M為PC的中點,點E為BC邊上的點,且 =λ.

(1)求證:平面ADM⊥平面PBC;
(2)是否存在實數(shù)λ,使得二面角P﹣DE﹣B的余弦值為 ?若存在,求出實數(shù)λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)=滿足:對任意的實數(shù)x1x2,都有(x1-x2)[fx1)-fx2)]>0成立,則實數(shù)a的取值范圍是(。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,圓C的極坐標方程是ρ=asinθ,直線l的參數(shù)方程是 (t為參數(shù))
(1)若a=2,直線l與x軸的交點是M,N是圓C上一動點,求|MN|的最大值;
(2)直線l被圓C截得的弦長等于圓C的半徑的 倍,求a的值.

查看答案和解析>>

同步練習冊答案