6.已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x.
(1)求f(x)的最小正周期及對(duì)稱中心;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的單調(diào)遞減區(qū)間.

分析 (1)兩角差的余弦公式化簡(jiǎn),再根據(jù)周期的定義和對(duì)稱中心的定義即可求出,
(2)根據(jù)余弦函數(shù)的圖象和性質(zhì)即可求出.

解答 解:(1):f(x)=(cos4x-sin4x)-2sinx•cosx=(cos2x-sin2x)-sin2x
=cos2x-sin2x=cos(2x+$\frac{π}{4}$). 
∴f(x)的最小正周期T=$\frac{2π}{2}$=π. 
∴2x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
∴x=$\frac{k}{2}$π+$\frac{π}{8}$,k∈Z,
∴對(duì)稱中心($\frac{k}{2}$π+$\frac{π}{8}$,0),k∈Z,
(2)令2kπ≤2x+$\frac{π}{4}$≤2kπ+π,k∈Z,
∴kπ-$\frac{π}{8}$≤x≤kπ+$\frac{3π}{8}$,k∈Z,
∵x∈[0,$\frac{π}{2}$],
∴f(x)的單調(diào)遞減區(qū)間為[0,$\frac{3π}{8}$].

點(diǎn)評(píng) 本題主要考查兩角和差的正弦、余弦公式的應(yīng)用,二倍角公式,余弦函數(shù)的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓的焦點(diǎn)分別為F1(-2$\sqrt{2}$,0)、F2(2$\sqrt{2}$,0),長(zhǎng)軸長(zhǎng)為6,設(shè)直線x-y+2=0交橢圓于A、B兩點(diǎn)
(1)求橢圓的方程;
(2)求線段AB的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則點(diǎn)C1到平面A1BD的距離是$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知A=$\frac{3}{{\frac{1}{p}+\frac{1}{q}+\frac{1}{s}}}$,B=$\frac{p+q+s}{3}$( p,q,s∈(0,+∞))
(Ⅰ)分別就$\left\{{\begin{array}{l}{p=1}\\{q=1}\\{s=1}\end{array}}$和$\left\{{\begin{array}{l}{p=1}\\{q=2}\\{s=1}\end{array}}$判斷A與B的大小關(guān)系,并由此猜想:對(duì)于任意的正數(shù)p,q,s,A與B的大小關(guān)系及等號(hào)成立的條件;
(Ⅱ)請(qǐng)證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖所示,是某人在用火柴拼圖時(shí)呈現(xiàn)的圖形,其中第1個(gè)圖象用了3根火柴,第2個(gè)圖象用了9根火柴,第3個(gè)圖形用了18根火柴,
…,則第20個(gè)圖形用的火柴根數(shù)為630.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)y=f(x)(x∈R)的導(dǎo)函數(shù)為y=f′(x),且f(x)=f(-x),f′(x)<f(x).則下列三個(gè)數(shù):a=ef(2),b=f(3),c=e2f(-1)從小到大排列為b<a<c.(e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=2ax-$\frac{x}$+lnx,若f(x)在x=1,x=$\frac{1}{2}$處取得極值,
(Ⅰ)求a、b的值;
(Ⅱ)求f(x)在[$\frac{1}{4}$,2]上的單調(diào)區(qū)間
(Ⅲ)在[$\frac{1}{4}$,2]存在x0,使得不等式f(x0)-c≤0成立,求c的最小值.
(參考數(shù)據(jù):e2≈7.389,e3≈20.08)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,則x+y的取值范圍為(  )
A.[-2,0]B.[0,2]C.[-2,2]D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=sinxcosx+$\sqrt{3}{sin^2}$x-$\frac{{\sqrt{3}}}{2}$.
(1)當(dāng)x∈[${\frac{π}{12}$,$\frac{7π}{12}}$]時(shí),求函數(shù)f(x)的值域;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間和其圖象的對(duì)稱中心.

查看答案和解析>>

同步練習(xí)冊(cè)答案