11.設(shè)函數(shù)y=f(x)(x∈R)的導(dǎo)函數(shù)為y=f′(x),且f(x)=f(-x),f′(x)<f(x).則下列三個(gè)數(shù):a=ef(2),b=f(3),c=e2f(-1)從小到大排列為b<a<c.(e為自然對(duì)數(shù)的底數(shù))

分析 構(gòu)造函數(shù)g(x)=e-xf(x),利用導(dǎo)數(shù)得出其單調(diào)性,及利用f(-x)=f(x)即可得出.

解答 解:構(gòu)造函數(shù)g(x)=e-xf(x),
∵f′(x)<f(x),則g′(x)=-e-xf(x)+e-xf′(x)=e-x(f′(x)-f(x))<0.
∴函數(shù)g(x)在R上單調(diào)遞減.
∴e-3f(3)<e-2f(2)<e-1f(1),又f(-1)=f(1),
∴f(3)<ef(2)<e2f(1)=e2f(-1).
故三個(gè)數(shù):a=ef(2),b=f(3),c=e2f(-1)從小到大依次排列為:f(3),ef(2),e2f(-1).
故答案為:b<a<c.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性應(yīng)用,恰當(dāng)構(gòu)造函數(shù)g(x)=e-xf(x),熟練掌握利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、奇偶性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{lnx}{x}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=xf(x),若g(x)-x+m≤0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)y=ax+cosx是增函數(shù),則實(shí)數(shù)a的范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)凸k(k≥3且k∈N)邊形的對(duì)角線的條數(shù)為f(k),則凸k+1邊形的對(duì)角線的條數(shù)為f(k+1)=f(k)+( 。
A.k-1B.kC.k+1D.k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x.
(1)求f(x)的最小正周期及對(duì)稱中心;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ex-kx,x∈R,k為常數(shù),e是自然對(duì)數(shù)的底數(shù).
(1)當(dāng)k=e時(shí),證明f(x)≥0恒成立;
(2)若k>0,且對(duì)于任意x>0,f(x)>0恒成立,試確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=2cos2x+2$\sqrt{3}$sinxcosx(x∈R).
(1)求函數(shù)f(x)的最小正周期;
(2)在0<x≤$\frac{π}{3}$的條件下,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知奇函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x>0時(shí)有2f(x)+xf′(x)>x2,則不等式(x+2014)2f(x+2014)+4f(-2)<0的解集為(  )
A.(-∞,-2012)B.(-2016,-2012)C.(-∞,-2016)D.(-2016,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在如圖所示的平面直角坐標(biāo)系中,已知點(diǎn)A(1,0)和點(diǎn)B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O為坐標(biāo)原點(diǎn).
(1)若x=$\frac{3}{4}$π,設(shè)點(diǎn)D為線段OA上的動(dòng)點(diǎn),求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈[0,$\frac{π}{2}$],向量$\overrightarrow{m}$=$\overrightarrow{BC}$,$\overrightarrow{n}$=(1-cosx,sinx-2cosx),求$\overrightarrow{m}•\overrightarrow{n}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案