【題目】已知正項數(shù)列{an}的前n項和為Sn , 且4Sn=(an+1)2(n∈N+). (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設Tn為數(shù)列{ }的前n項和,證明: ≤Tn<1(n∈N+).
【答案】解:(Ⅰ)當n=1時,4a1=(a1+1)2 , 解得:a1=1, 當n≥2時,4Sn﹣1=(an﹣1+1)2 , 4Sn=(an+1)2 ,
兩式相減得:(an+an﹣1)(an﹣an﹣1﹣2)=0,
∵an>0,
∴an﹣an﹣1=2,
∴數(shù)列{an}是以2為公差,以1為首項的等差數(shù)列,
∴an=2n﹣1;
證明:(Ⅱ) = = ﹣ ,
∴Tn=(1﹣ )+( ﹣ )+( ﹣ )+…+( ﹣ ),
=1﹣ ,
∴Tn<1,
>0,
∴Tn≥T1= .
∴ ≤Tn<1(n∈N+)
【解析】(Ⅰ)當n=1時,即可求得a1=1,當n≥2時,4Sn﹣1=(an﹣1+1)2 , 4Sn=(an+1)2 , 兩式相減可得:(an+an﹣1)(an﹣an﹣1﹣2)=0,可知:an﹣an﹣1=2,數(shù)列{an}是以2為公差,以1為首項的等差數(shù)列,即可求得數(shù)列{an}的通項公式;(Ⅱ) = ﹣ ,根據(jù)“裂項法”即可求得Tn=1﹣ ,Tn<1,由Tn≥T1= .即可證明 ≤Tn<1(n∈N+).
【考點精析】解答此題的關鍵在于理解數(shù)列的前n項和的相關知識,掌握數(shù)列{an}的前n項和sn與通項an的關系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,直角三角形ABC中,A=60°,沿斜邊AC上的高BD,將△ABD折起到△PBD的位置,點E在線段CD上.
(1)求證:PE⊥BD;
(2)過點D作DM⊥BC交BC于點M,點N為PB中點,若PE∥平面DMN,求 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣2cos2x,下面結(jié)論中錯誤的是( )
A.函數(shù)f(x)的最小正周期為π
B.函數(shù)f(x)的圖象關于x= 對稱
C.函數(shù)f(x)的圖象可由g(x)=2sin2x﹣1的圖象向右平移 個單位得到
D.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (a>0,且a≠1)在R上單調(diào)遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是( )
A.(0, ]
B.[ , ]
C.[ , ]∪{ }
D.[ , )∪{ }
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),圓的標準方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程;
(2)若射線與的交點為,與圓的交點為,且點恰好為線段的中點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位安排位員工在春節(jié)期間大年初一到初七值班,每人值班天,若位員工中的甲、乙排在相鄰的兩天,丙不排在初一,丁不排在初七,則不同的安排方案共有_______
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分) 某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應關系如下表(假設該區(qū)域空氣質(zhì)量指數(shù)不會超過):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級 | 級優(yōu) | 級良 | 級輕度污染 | 級中度污染 | 級重度污染 | 級嚴重污染 |
該社團將該校區(qū)在年天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.
(Ⅰ)請估算年(以天計算)全年空氣質(zhì)量優(yōu)良的天數(shù)(未滿一天按一天計算);
(Ⅱ)該校年月、日將作為高考考場,若這兩天中某天出現(xiàn)級重度污染,需要凈化空氣費用元,出現(xiàn)級嚴重污染,需要凈化空氣費用元,記這兩天凈化空氣總費用為元,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com