已知2×2矩陣M=有特征值λ=-1及對(duì)應(yīng)的一個(gè)特征向量e1=.
(1)求矩陣M.
(2)設(shè)曲線(xiàn)C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線(xiàn)C的方程.
(1)   (2) 22x2+4xy+y2=1
(1)依題意得,=(-1),

解得所以M=.
(2)設(shè)曲線(xiàn)C上一點(diǎn)P(x,y)在矩陣M的作用下得到曲線(xiàn)x2+2y2=1上一點(diǎn)P'(x',y'),
=,即
又因?yàn)?x')2+2(y')2=1,所以(2x+y)2+2(3x)2=1,
整理得曲線(xiàn)C的方程為22x2+4xy+y2=1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩陣,,計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

將正整數(shù))任意排成列的數(shù)表.對(duì)于某一個(gè)數(shù)表,計(jì)算各行和各列中的任意兩個(gè)數(shù))的比值,稱(chēng)這些比值中的最小值為這個(gè)數(shù)表的“特征值”.若表示某個(gè)列數(shù)表中第行第列的數(shù)(,),且滿(mǎn)足,當(dāng)時(shí)數(shù)表的“特征值”為_(kāi)________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩陣M,向量α,β=.
(1)求向量3αβ在TM作用下的象;
(2)求向量4-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求點(diǎn)A(2,0)在矩陣對(duì)應(yīng)的變換作用下得到的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求矩陣M=的特征值和特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,0),B(-2,0),C(-2,1).設(shè)k為非零實(shí)數(shù),矩陣M,N,點(diǎn)A、B、C在矩陣MN對(duì)應(yīng)的變換下得到點(diǎn)分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知矩陣不存在逆矩陣,求實(shí)數(shù)的值及矩陣的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求使等式=M成立的矩陣M.

查看答案和解析>>

同步練習(xí)冊(cè)答案