在平面直角坐標系中,點到兩點的距離之和等于4,設(shè)點的軌跡為
(Ⅰ)寫出的方程;
(Ⅱ)設(shè)直線交于兩點.k為何值時?此時的值是多少?
(1) (2)

試題分析:解:(Ⅰ)設(shè)xy),由橢圓定義可知,點的軌跡是以為焦點,長半軸為2的橢圓.它的短半軸,故曲線的方程為.    4分
(Ⅱ)設(shè),其坐標滿足
消去y并整理得, 顯然△>0--------6分
.              7分
,即要.    而,   8分
于是
所以時,,故.          10分
時,,
,   12分
,所以.        14分
點評:解決的關(guān)鍵是根據(jù)橢圓的定義得到橢圓的方程,以及根據(jù)聯(lián)立方程組結(jié)合韋達定理來的餓到弦長公式,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知平面內(nèi)一動點到點的距離與點軸的距離的差等于1.(I)求動點的軌跡的方程;(II)過點作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點,與軌跡相交于點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C:+=1(a>b>0)的左、右焦點分別為F、F,A是橢圓C上的一點,AF⊥FF,O是坐標原點,OB垂直AF于B,且OF=3OB.

(Ⅰ)求橢圓C的離心率;
(Ⅱ)求t∈(0,b),使得命題“設(shè)圓x+y=t上任意點M(x,y)處的切線交橢圓C于Q、Q兩點,那么OQ⊥OQ”成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓()過點,其左、右焦點分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標系xOy中,已知點P,曲線C的參數(shù)方程為φ為參數(shù))。以原點為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為
(1)判斷點P與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線l與直線C的兩個交點為A、B,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是橢圓的右焦點,定點A,M是橢圓上的動點,則的最小值為                 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點和圓,是圓的直徑,的三等分點,(異于)是圓上的動點,,,直線交于,則當     時,為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長是短軸長的兩倍,焦距為.
(1)求橢圓的標準方程;
(2)設(shè)不過原點的直線與橢圓交于兩點、,且直線、的斜率依次成等比數(shù)列,求△面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為雙曲線()的兩個焦點, 若點和點是正三角形的三個頂點,則雙曲線的離心率為(    )。
A.B.C.D.3

查看答案和解析>>

同步練習(xí)冊答案