16.數(shù)列{an}的前n項和是Sn,a1=5,且an=Sn-1(n=2,3,4,…).
(1)求Sn;
(2)求數(shù)列{an}的通項公式;
(3)求證:$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{5}$.

分析 (1)由an=Sn-1,得an+1=2an,(n≥2且n∈N*),由此能求出Sn
(2)當n=1時,a1=5,當n≥2,且n∈N*時,${a}_{n}={a}_{2}•{2}^{n-2}$=5•2n-2.由此能求出數(shù)列{an}的通項公式.
(3)當n=1時,$\frac{1}{{a}_{1}}$=$\frac{1}{5}<\frac{3}{5}$,成立,當n≥2且n∈N*時,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$=$\frac{1}{5}+\frac{1}{5}×(1+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})$,由此能證明$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{5}$.

解答 解:(1)由an=Sn-1,①,得:an+1=Sn,②
②-①得:an+1-an=Sn-Sn-1=an
即an+1=2an,(n≥2且n∈N*),
∵a2=S1=a1=5,
故數(shù)列從第二項起,各項成等比數(shù)列且公比為2.
∴${S}_{n}={a}_{n+1}=5•{2}^{n-1}$,n∈N*
(2)當n=1時,a1=5,
當n≥2,且n∈N*時,${a}_{n}={a}_{2}•{2}^{n-2}$=5•2n-2
故數(shù)列{an}的通項公式為${a}_{n}=\left\{\begin{array}{l}{5,n=1}\\{5•{2}^{n-2},n≥2,且n∈{N}^{*}}\end{array}\right.$.
證明:(3)當n=1時,$\frac{1}{{a}_{1}}$=$\frac{1}{5}<\frac{3}{5}$,成立,
當n≥2且n∈N*時,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$=$\frac{1}{5}+\frac{1}{5}+\frac{1}{5×2}+…+\frac{1}{5×{2}^{n-2}}$
=$\frac{1}{5}+\frac{1}{5}×(1+\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n-1}})$

=$\frac{1}{5}+\frac{1}{5}×\frac{1-(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$
=$\frac{1}{5}+\frac{2}{5}(1-\frac{1}{{2}^{n}})$
<$\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$.
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{5}$.

點評 本題考查數(shù)列的前n項和公式和通項公式的求法,考查不等式的證明,是中檔題,解題時要認真審題,注意放縮法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.閱讀如圖所示的程序框圖,若輸入P=2013,則輸出的S是$\frac{2013}{2014}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知α,β是兩個不同的平面,m.n是兩條不同的直線,則下列命題中正確的是( 。
A.若m∥n,m?β,則n∥βB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥β,α⊥β,則m∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.sin(1050o)=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.秦九韶是我國南宋時期的數(shù)學家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入n,x的值分別為4,3,則輸出v的值為( 。
A.20B.61C.183D.548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.公比為2的等比數(shù)列{an}中,若a1+a2=3,則a3+a4的值為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.將函數(shù)y=1+sin(2x+$\frac{π}{4}$)的圖象向下平移1個單位,再向右平移$\frac{π}{8}$個單位,所得到的函數(shù)解析式是( 。
A.y=sin(2x+$\frac{π}{8}$)B.y=sin(2x+$\frac{3π}{8}$)C.y=cos2xD.y=sin2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.兩直線ρsin(θ+$\frac{π}{4}$)=2011,ρsin(θ-$\frac{π}{4}$)=2012的位置關系是( 。
A.平行B.垂直C.相交D.重合

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)對一切實數(shù)x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)當0<x<2時不等式f(x)>ax-5恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案