函數(shù)y=
ax+1
(a<0且a為常數(shù))在區(qū)間(-∞,1]上有意義,則實數(shù)a的取值范圍(  )
A、[-1,0)
B、(-1,0)
C、[-1,0]
D、(-1,+∞)
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)函數(shù)成立的條件,即可得到結(jié)論.
解答: 解:∵y=
ax+1
(a<0且a為常數(shù))在區(qū)間(-∞,1]上有意義,
∴當x≤1時,ax+1≥0恒成立.
∵a<0,∴不等式ax+1≥0等價為x≤-
1
a
,
-
1
a
≥1,即a≥-1,
∵a<0,∴-1≤a<0,
故選:A
點評:本題主要考查函數(shù)定義域的應用,利用參數(shù)恒成立問題是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線y=x3的一條切線l與直線x+4y-8=0垂直,則l的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3-x
+
x-1
的定義域為集合M,函數(shù)g(x)=|3-x|-|x-1|的值域為N.
(1)求M,N;
(2)求M∪N,M∩∁RN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,向量
a
-
b
等于 ( 。
A、-2
e1
-4
e2
B、-4
e1
-2
e2
C、
e1
-3
e2
D、-
e1
+3
e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

滿足條件M∪{1,2}={1,2,3}的集合M的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+f′(1)x2-x,則函數(shù)f(x)的圖象在點(1,f(1))處的切線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
sin(
π
2
-x)+sin(π-x)
cos(-x)+sin(2π-x)
=2,則tan(x+
4
)的值為 (  )
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長為1的正方形,AA1=2,M、N分別是A1B1、A1D1中點,則三棱錐A-BMN的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=-x2+(m-2)x+2-m.
(1)若y=|f(x)|在[-1,0]上是減函數(shù),求實數(shù)m的取值范圍;
(2)是否存在整數(shù)a,b,使得a≤f(x)≤b的解集恰好是[a,b],若存在,求出a,b的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案