【題目】對任意,函數(shù)滿足:,,數(shù)列的前15項和為,數(shù)列滿足,若數(shù)列的前項和的極限存在,則________

【答案】

【解析】

由題意可得,0≤fn≤1fn+1.展開代入可得,又,化為.再根據(jù)數(shù)列的前15項和與,解得,.可得,.解出f2k1),即可得出,對n分奇偶分別求和并取極限,利用極限相等求得.

,

,

展開為,

0≤fn≤1,

,

化為

∴數(shù)列{}是周期為2的數(shù)列.

∵數(shù)列{}的前15項和為,

7+

,

解得,

0,fk+1,解得f2k1

0,fn+1,解得f2k,

令數(shù)列的前n項和為,則當n為奇數(shù)時,,取極限得;

則當n為偶數(shù)時,,取極限得;

若數(shù)列的前項和的極限存在,則,

故答案為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面立角坐標系中,過點的圓的圓心軸上,且與過原點傾斜角為的直線相切.

(1)求圓的標準方程;

(2)在直線上,過點作圓的切線、,切點分別為、,求經(jīng)過、、四點的圓所過的定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=(x2aexaR).

1)若函數(shù)fx)有兩個不同的極值點,求實數(shù)a的取值范圍;

2)當a0時,若關(guān)于x的方程fx)=m存在三個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中,點是底面的中心,是線段的上一點。

(1)若的中點,求直線與平面所成角的正弦值;

(2)能否存在點使得平面平面,若能,請指出點的位置關(guān)系,并加以證明;若不能,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運動場地,如圖所示,其中是足球場地邊線所在的直線,球門處于所在直線的正中間位置,足球運動員(將其看做點)在運動場上觀察球門的角稱為視角.

(1)當運動員帶球沿著邊線奔跑時,設(shè)到底線的距離為碼,試求當為何值時最大;

(2)理論研究和實踐經(jīng)驗表明:張角越大,射門命中率就越大.現(xiàn)假定運動員在球場都是沿著垂直于底線的方向向底線運球,運動到視角最大的位置即為最佳射門點,以的中點為原點建立如圖所示的直角坐標系,求在球場區(qū)域內(nèi)射門到球門的最佳射門點的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線方程,為焦點,為拋物線準線上一點,為線段與拋物線的交點,定義:.

(1)當時,求

(2)證明:存在常數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

已知在被調(diào)查的北方學生中有5名數(shù)學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一列非零向量滿足:,.

1)寫出數(shù)列的通項公式;

2)求出向量的夾角,并將中所有與平行的向量取出來,按原來的順序排成一列,組成新的數(shù)列,為坐標原點,求點列的坐標;

3)令),求的極限點位置.

查看答案和解析>>

同步練習冊答案