分析 (Ⅰ)畫出平面區(qū)域,求出目標函數(shù)z的最大值為12時的坐標,得出a,b的關系,利用基本不等式的性質(zhì)求解.
(Ⅱ)z的最大值不大于12,由(1)可的2a+3b≤6,a>0,b>0,畫出平面區(qū)域,令Z=a2+b2+2(b-a),則轉(zhuǎn)為(a-1)2+(b+1)2=Z+2=r2利用幾何意義求解最值.
解答 解:(Ⅰ)不等式表示的平面區(qū)域如圖所示陰影部分,當直線ax+by=z(a>0,b>0)
過直線x-y+2=0與直線3x-y-6=0的交點(4,6)時,
目標函數(shù)z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6,$\frac{2}{a}+\frac{3}$=$(\frac{2}{a}+\frac{3})\frac{2a+3b}{6}$$\frac{13}{6}+(\frac{a}+\frac{a})≥\frac{13}{6}+2=\frac{25}{6}$.
當且僅當a=b=$\frac{6}{5}$時取等號.
(Ⅱ)若z的最大值不大于12,由(1)可的2a+3b≤6,a>0,b>0,
畫出平面區(qū)域,
令Z=a2+b2+2(b-a),則轉(zhuǎn)為(a-1)2+(b+1)2=Z+2=r2.圓心為(1,-1),
由圖可知,當r=1時,最小,此時Z=-1;
當圓過(0.2)時,半徑最大,r=$\sqrt{(1-0)^{2}+(2+1)^{2}}=\sqrt{10}$,此時Z=8,
∵a>0,
∴Z>-1
因此Z=a2+b2+2(b-a)的取值范圍(-1,8].
點評 本題考查了基本不等式的最值的運用、簡單的線性規(guī)劃以及利用幾何意義求最值.屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | ±15 | C. | 39 | D. | $\frac{225}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com