定義在上的單調(diào)函數(shù)滿足,且對任意都有
(1)求證:為奇函數(shù);
(2)若對任意恒成立,求實數(shù)的取值范圍.
(1)證明見試題解析;(2).
【解析】
試題分析:(1)這是抽象函數(shù)問題,要證明它是奇函數(shù),當然要根據(jù)奇函數(shù)的定義,證明或,由此在已知式里設(shè),從而有,因此我們還要先求出,這個只要設(shè)或者有一個為0即可得,故可證得為奇函數(shù);(2)不等式可以利用為奇函數(shù)的結(jié)論,變形為,再利用函數(shù)的單調(diào)性去掉符號“”,轉(zhuǎn)化為關(guān)于的不等式恒成立問題,即對任意成立,這時還需要用換元法(設(shè))變化二次不等式怛成立,當然不要忘記的取值范圍.
試題解析:(Ⅰ)證明:∵ ①
令,代入①式,得即
令,代入①式,得,又
則有即對任意成立,
所以是奇函數(shù). 4分
(Ⅱ)解:,即,又在上是單調(diào)函數(shù),
所以在上是增函數(shù).
又由(1)是奇函數(shù).
,即對任意成立.
令,問題等價于對任意恒成立. 8分
令其對稱軸.
當時,即時,,符合題意; 10分
當時,對任意恒成立
解得 12分
綜上所述,對任意恒成立時,
實數(shù)的取值范圍是:. 13分
考點:(1)奇函數(shù)的定義;;(2)不等式恒成立問題.
科目:高中數(shù)學 來源:2010年廣東省高一上學期期中考試數(shù)學卷 題型:解答題
(本小題滿分為14分)定義在(-1,1)上的函數(shù)滿足:
①對任意都有;
②在上是單調(diào)遞增函數(shù),.
(1)求的值;
(2)證明為奇函數(shù);
(3)解不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分為14分)定義在(-1,1)上的函數(shù)滿足:
①對任意都有;
②在上是單調(diào)遞增函數(shù),.
求的值;
證明為奇函數(shù);
解不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com