1.已知直線x-y+1=0與曲線y=lnx-a相切,則a的值為-2.

分析 先設(shè)出切點坐標,根據(jù)導(dǎo)數(shù)的幾何意義求出在切點處的導(dǎo)數(shù),從而求出切點橫坐標,再根據(jù)切點既在曲線y=lnx-a的圖象上又在直線x-y+1=0上,即可求出a的值.

解答 解:設(shè)切點坐標為(m,n)
y'|x=m=$\frac{1}{m}$=1
解得,m=1
切點(1,n)在直線x-y+1=0上
∴n=2,
而切點(1,2)又在曲線y=lnx-a上
∴a=-2
故答案為-2.

點評 本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是正方體平面展開圖,在這個正方體中
①BM與ED平行;
②CN與BE是異面直線;
③CN與BM成60°角;
④EM與BN垂直.
以上四個命題中,正確命題的序號是(  )
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.有四個等式:
(1)0•$\overrightarrow{a}$=0,(2)0$\overrightarrow{a}$=0,(3)$\overrightarrow 0$-$\overrightarrow{AB}$=$\overrightarrow{BA}$,(4)|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|.
其中成立的是(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列對象能確定一個集合的是( 。
A.第一象限內(nèi)的所有點B.某班所有成績較好的學(xué)生
C.高一數(shù)學(xué)課本中的所有難題D.所有接近1的數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{{2^x}-1}}{{{2^{x+1}}+a}}$是奇函數(shù)
(1)求a的值;
(2)判斷函數(shù)的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)對于任意x∈R滿足f(x)=f(-x)和f(x)=f(2-x),在區(qū)間[0,1]上,函數(shù)f(x)單調(diào)遞增,則有ω=π,φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx,(ω>0)周期T∈[π,2π],x=π為函數(shù)f(x)圖象的一條對稱軸,
(1)求ω;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.化簡求值:
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$;
(2)$\frac{1}{2}$lg2.5+lg2-lg$\sqrt{0.1}$-log29×log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.定義在(-1,1)上的減函數(shù)f(x)且滿足對任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)解關(guān)于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

同步練習(xí)冊答案