8.已知數(shù)列{an}的通項(xiàng)公式an=2n,設(shè)數(shù)列{bn}滿足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2)
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=an($\frac{2}{b_n}$-1),求數(shù)列{cn}的前n項(xiàng)和Tn

分析 (1)由數(shù)列{bn}滿足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2,利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)cn=an($\frac{2}{b_n}$-1)=(2n+1)•2n,利用“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:(1)∵數(shù)列{bn}滿足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2),∴數(shù)列$\{\frac{1}{_{n}}\}$是等差數(shù)列,首項(xiàng)為2,公差為1,∴$\frac{1}{_{n}}$=2+(n-1)=n+1,
∴bn=$\frac{1}{n+1}$.
(2)cn=an($\frac{2}{b_n}$-1)=2n(2n+2-1)=(2n+1)•2n
∴數(shù)列{cn}的前n項(xiàng)和Tn=3×2+5×22+…+(2n+1)•2n,
2Tn=3×22+5×23+…+(2n-1)•2n+(2n+1)•2n+1
∴-Tn=3×2+2(22+23+…+2n)-(2n+1)•2n+1=$2×\frac{2({2}^{n}-1)}{2-1}$+2-(2n+1)•2n+1=-2+(1-2n)×2n+1,
∴Tn=(2n-1)2n+1+2.

點(diǎn)評(píng) 本題考查了“錯(cuò)位相減法”與等比數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知關(guān)于x的不等式mx2+2x+6m>0,在下列條件下分別求m的值或取值范圍:
(1)不等式的解集為{x|2<x<3};      
(2)不等式的解集為R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.同時(shí)具有性質(zhì)“①最小周期是π;②圖象關(guān)于直線x=$\frac{π}{3}$對(duì)稱;③在[$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)”的一個(gè)函數(shù)是(  )
A.y=sin(2x-$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=sin($\frac{x}{2}$+$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知橢圓E的中心在原點(diǎn),離心率為$\frac{\sqrt{6}}{3}$,右焦點(diǎn)到直線x+y+$\sqrt{2}$=0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點(diǎn)為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點(diǎn)M、N,當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.正三角形ABC中,D是線段BC上的點(diǎn),AB=6,BD=2,則$\overrightarrow{AB}$•$\overrightarrow{AD}$=(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.過(guò)拋物線y2=2x的焦點(diǎn)F作直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),若x1+x2=4,則|AB|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.三棱柱ABC-A1B1C1的側(cè)棱垂直底面,AC⊥BC,AC=BC=4,AA1=4.
(1)求證:AC⊥BC1;
(2)求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知tanα=$\frac{1}{2}$,則sinαcosα的值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知0<x<2,當(dāng)x取什么值時(shí),函數(shù)f(x)=$\sqrt{x(3-x)}$的值最大?最大值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案