【題目】如圖,某沿海地區(qū)計劃鋪設一條電纜聯(lián)通A,B兩地,A地位于東西方向的直線MN上的陸地處,B地位于海上一個燈塔處,在A地用測角器測得,在A地正西方向4km的點C處,用測角器測得.擬定鋪設方案如下:在岸MN上選一點P,先沿線段AP在地下鋪設,再沿線段PB在水下鋪設.預算地下、水下的電纜鋪設費用分別為2萬元/km4萬元/km,設,,鋪設電纜的總費用為萬元.

1)求函數(shù)的解析式;

2)試問點P選在何處時,鋪設的總費用最少,并說明理由.

【答案】(1),其中(2)當點P選在距離A處時,鋪設的總費用最少,詳見解析.

【解析】

1)過BMN的垂線,垂足為D,根據(jù)題中條件,得到,,由,得到,,,進而得到,化簡即可得出結果;

2)根據(jù)(1)的結果,先設,對求導,用導數(shù)的方法研究其單調性,即可求出最值.

1)過BMN的垂線,垂足為D.

中,,則.

中,,

所以.

因為,所以,

所以.

,則,.

,得.

所以,

,其中.

2)設,

.

,得,所以.

列表如下:

0

h(θ)

極小值

所以當時,取得最小值,

所以取得最小值,此時.

答:當點P選在距離A處時,鋪設的總費用最少,且為萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設為邊長為1的正方形內(nèi)部及其邊界的點構成的集合.從中的任意點Px軸、y軸的垂線,垂足分別為.所有點構成的集合為M,M中所有點的橫坐標的最大值與最小值之差記為;所有點構成的集合為N,N中所有點的縱坐標的最大值與最小值之差記為.給出以下命題:

的最大值為:②的取值范圍是;③恒等于0

其中所有正確結論的序號是()

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構為調查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調查結果統(tǒng)計如下:

支持

不支持

合計

年齡不大于50歲

80

年齡大于50歲

10

合計

70

100

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關?

(3)已知在被調查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位女教師的概率.

附:,

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,

(Ⅰ)討論函數(shù)的單調性;

(Ⅱ)記表示m,n中的最大值,若,且函數(shù)恰有三個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,12月1日至12月5日的晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù)如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x(℃)

10

11

13

12

8

發(fā)芽數(shù)y(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2組數(shù)據(jù)的概率.

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求y關于x的線性回歸方程.

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,M,N分別是,的中點,且.

1)求的長度;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若方程有兩個不等實根、,且,則實數(shù)的取值范圍為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)設,求的最小值;

(2)若曲線僅有一個交點,證明:曲線在點處有相同的切線,且.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點為線段的中點,點是線段上的一個動點.

(Ⅰ)求證:平面 平面

(Ⅱ)設二面角的平面角為,試判斷在線段上是否存在這樣的點,使得,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案