分析 先利用和差化積公式化簡已知,將兩式相除后,利用同角三角函數(shù)基本關系式可求tan$\frac{α+β}{2}$,利用二倍角的正弦函數(shù)公式,同角三角函數(shù)基本關系式即可化簡求值.
解答 解:∵sinα+sinβ=2sin$\frac{α+β}{2}$cos$\frac{α-β}{2}$=$\frac{1}{4}$,①
cosα+cosβ=2cos $\frac{α+β}{2}$cos$\frac{α-β}{2}$=$\frac{1}{3}$,②
∴①÷②可得:tan $\frac{α+β}{2}$=$\frac{3}{4}$,
∴sin(α+β)=$\frac{2tan\frac{α+β}{2}}{1+ta{n}^{2}\frac{α+β}{2}}$=$\frac{2×\frac{3}{4}}{1+(\frac{3}{4})^{2}}$=$\frac{24}{25}$.
故答案為:$\frac{24}{25}$.
點評 本題主要考查了和差化積公式,同角三角函數(shù)基本關系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想和計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{3}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,+∞) | B. | (1,+∞) | C. | (-1,2) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{{2}^{10}}$ | B. | $\frac{1}{{2}^{15}}$ | C. | 2${\;}^{\frac{31}{16}}$ | D. | 2${\;}^{\frac{47}{16}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
維生素A(單位/kg) | 維生素B(單位/kg) | |
甲 | 3 | 5 |
乙 | 4 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com