【題目】求證:不論m取什么實(shí)數(shù),直線(2m-1)x+(m+3)y-(m-11)=0都經(jīng)過一個定點(diǎn),并求出這個定點(diǎn)的坐標(biāo).

【答案】見解析

【解析】證法一:對于方程(2m-1)x+(m+3)y-(m-11)=0,

令m=0,得x-3y-11=0;令m=1,得x+4y+10=0.

解方程組得兩直線的交點(diǎn)為(2,-3).將點(diǎn)(2,-3)代入已知直線方程左邊,得(2m-1)×2+(m+3)×(-3)-(m-11)=4m-2-3m-9-m+11=0.

這表明不論m為什么實(shí)數(shù),所給直線均經(jīng)過定點(diǎn)(2,-3).

證法二:以m為未知數(shù),整理為(2x+y-1)m+(-x+3y+11)=0.

由于m取值的任意性,所以解得x=2,y=-3.

所以所給的直線不論m取什么實(shí)數(shù),都經(jīng)過定點(diǎn)(2,-3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c,x∈[﹣2,2]表示的曲線過原點(diǎn),且在x=±1處的切線斜率均為﹣1,給出以下結(jié)論: ①f(x)的解析式為f(x)=x3﹣4x,x∈[﹣2,2];
②f(x)的極值點(diǎn)有且僅有一個;
③f(x)的最大值與最小值之和等于0.
其中正確的結(jié)論有(
A.0個
B.1個
C.2個
D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動點(diǎn),且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時,則cosα的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國的高鐵技術(shù)發(fā)展迅速,鐵道部門計劃在兩城市之間開通高速列車,假設(shè)列車在試運(yùn)行期間,每天在兩個時間段內(nèi)各發(fā)一趟由城開往城的列車(兩車發(fā)車情況互不影響),城發(fā)車時間及概率如下表所示:

發(fā)車

時間

概率

若甲、乙兩位旅客打算從城到城,他們到達(dá)火車站的時間分別是周六的和周日的(只考慮候車時間,不考慮其他因素).

(1)設(shè)乙候車所需時間為隨機(jī)變量(單位:分鐘),求的分布列和數(shù)學(xué)期望

(2)求甲、乙兩人候車時間相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:x+2y-2=0,試求:

(1)點(diǎn)P(-2,-1)關(guān)于直線l的對稱點(diǎn)坐標(biāo);

(2)直線關(guān)于直線l對稱的直線l2的方程;

(3)直線l關(guān)于點(diǎn)(1,1)對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2 , 過右焦點(diǎn)F2且與x軸垂直的直線與雙曲線兩條漸近線分別交于A,B兩點(diǎn),若△ABF1為等腰直角三角形,且|AB|=4 ,P(x,y)在雙曲線上,M( , ),則|PM|+|PF2|的最小值為(
A. ﹣1
B.2
C.2 ﹣2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個圓柱形圓木的底面半徑為1 m,長為10 m,將此圓木沿軸所在的平面剖成兩部分.現(xiàn)要把其中一部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD如圖所示,其中O為圓心,C,D在半圓上,設(shè),木梁的體積為V單位:m3,表面積為S單位:m2

1求V關(guān)于θ的函數(shù)表達(dá)式;

2的值,使體積V最大;

3問當(dāng)木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·湖南)如下圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,EF分別是BC、CC1的中點(diǎn).

(1)證明:平面AEF⊥平面B1BCC1

(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

同步練習(xí)冊答案