【題目】為了保證食品的安全衛(wèi)生,食品監(jiān)督管理部門對(duì)某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測(cè)調(diào)研,檢測(cè)某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測(cè)量數(shù)據(jù)的莖葉圖(單位:毫克).規(guī)定:當(dāng)食品中的有害微量元素的含量在時(shí)為一等品,在為二等品,20以上為劣質(zhì)品.

(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求抽到食品甲包含劣質(zhì)品的概率和抽到食品乙全是一等品的概率;

(2)在概率和統(tǒng)計(jì)學(xué)中,數(shù)學(xué)期望(或均值)是基本的統(tǒng)計(jì)概念,它反映隨機(jī)變量取值的平均水平.變量的一切可能的取值與對(duì)應(yīng)的概率乘積之和稱為該變量的數(shù)學(xué)期望,記為.

參考公式:變量的取值為對(duì)應(yīng)取值的概率,可理解為數(shù)據(jù)出現(xiàn)的頻率

.

①每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、 二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,求這兩件食品各自能給該廠 帶來(lái)的盈利期望.

②若生產(chǎn)食品甲初期需要一次性投入10萬(wàn)元,生產(chǎn)食品乙初期需要一次性投人16 萬(wàn)元,但是以目前企業(yè)的狀況,甲乙兩條生產(chǎn)線只能投資其中一條.如果你是該食品廠負(fù)責(zé)人,以一年為期限,盈利為參照,請(qǐng)給出合理的投資方案.

【答案】(1);(2)①.答案見(jiàn)解析;②.答案見(jiàn)解析.

【解析】分析:(1)利用列舉法從個(gè)數(shù)據(jù)中各選取個(gè),共有種選法,其中抽到食品甲包含劣質(zhì)品有種,抽到食品乙全是一等品的有種,由古典概型概率公式可得結(jié)果;(2)①利用統(tǒng)計(jì)圖能求出分別從甲、乙食品中各抽取件,這兩種食品各自能給該廠帶來(lái)的盈利期望,;②假設(shè)一年都生產(chǎn)件甲和乙,則甲的利潤(rùn)函數(shù)為,則乙的利潤(rùn)函數(shù)為. 當(dāng)時(shí),;當(dāng)時(shí),,由此能求出結(jié)果.

詳解(1) 用分層抽樣方法抽到食品甲是一等品、二等品、劣質(zhì)品的樣本個(gè)數(shù)分別為,

抽到食品乙是一等品、二等品、劣質(zhì)品的樣本個(gè)數(shù)分別為3,1,1,

記為,

食品甲 5 個(gè)樣本抽取 2 個(gè)有共 10 種,

包含劣質(zhì)品的有共4種.

.

食品乙 5 個(gè)樣本抽取 2 個(gè)有共 10 種,

全是一等品的有共3種.

.

(2)①

②假設(shè)一年都生產(chǎn)件甲和乙,

則甲的利潤(rùn)函數(shù)為

則乙的利潤(rùn)函數(shù)為.

當(dāng)時(shí),;

當(dāng)時(shí),,

即年產(chǎn)量小于10000件時(shí)投資甲生產(chǎn)線,

等于10000件時(shí)投資兩條生產(chǎn)線一樣,

大于10000件時(shí)投資乙生產(chǎn)線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,為線段的垂直平分線,交與點(diǎn)上異于的任意一點(diǎn).

的值;

判斷的值是否為一個(gè)常數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)使得函數(shù)在定義域內(nèi)為增函數(shù);實(shí)數(shù)使得函數(shù)上存在兩個(gè)零點(diǎn),且

分別求出條件中的實(shí)數(shù)的取值范圍;

甲同學(xué)認(rèn)為“的充分條件”,乙同學(xué)認(rèn)為“的必要條件”,請(qǐng)判斷兩位同學(xué)的說(shuō)法是否正確,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年6月湖北潛江將舉辦第六屆“中國(guó)湖北(潛江)龍蝦節(jié)”,為了解不同年齡的人對(duì)“中國(guó)湖北(潛江)龍蝦節(jié)”的關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在20—70歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)“年輕人”與“中老年人”的人數(shù)之比為。

關(guān)注

不關(guān)注

合計(jì)

年輕人

30

中老年人

合計(jì)

50

50

100

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99﹪的把握認(rèn)為關(guān)注“中國(guó)湖北(潛江)龍蝦節(jié)”是否和年齡有關(guān)?

(2)現(xiàn)已經(jīng)用分層抽樣的辦法從中老年人中選取了6人進(jìn)行問(wèn)卷調(diào)查,若再?gòu)倪@6人中選取3人進(jìn)行面對(duì)面詢問(wèn),記選取的3人中關(guān)注“中國(guó)湖北(潛江)龍蝦節(jié)”的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望。

附:參考公式其中。

臨界值表:

0.05

0.010

0.001

3.841

6635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別過(guò)橢圓左、右焦點(diǎn)的動(dòng)直線相交于點(diǎn),與橢圓分別交于不同四點(diǎn),直線的斜率滿足.已知當(dāng)軸重合時(shí),,.

Ⅰ)求橢圓的方程;

Ⅱ)是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)坐標(biāo)并求出此定值;若不存在,說(shuō)明理由.

【答案】(Ⅰ);,.

【解析】試題分析:(1)當(dāng)軸重合時(shí),垂直于軸,得,,從而得橢圓的方程;(2)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,所以把坐標(biāo)化,可得點(diǎn)的軌跡是橢圓,從而求得定點(diǎn)和點(diǎn).

試題解析:當(dāng)軸重合時(shí),, ,所以垂直于軸,得,, ,橢圓的方程為.

焦點(diǎn)坐標(biāo)分別為, 當(dāng)直線斜率不存在時(shí),點(diǎn)坐標(biāo)為;

當(dāng)直線斜率存在時(shí),設(shè)斜率分別為, 設(shè), 得:

, 所以:,, 則:

. 同理:, 因?yàn)?/span>

, 所以, , 由題意知, 所以

, 設(shè),則,即,由當(dāng)直線斜率不存在時(shí),點(diǎn)坐標(biāo)為也滿足此方程,所以點(diǎn)在橢圓.存在點(diǎn)和點(diǎn),使得為定值,定值為.

考點(diǎn):圓錐曲線的定義,性質(zhì),方程.

【方法點(diǎn)晴】本題是對(duì)圓錐曲線的綜合應(yīng)用進(jìn)行考查,第一問(wèn)通過(guò)兩個(gè)特殊位置,得到基本量,,得,,從而得橢圓的方程,第二問(wèn)由題目分析如果存兩定點(diǎn),則點(diǎn)的軌跡是橢圓或者雙曲線 ,本題的關(guān)鍵是從這個(gè)角度出發(fā),把坐標(biāo)化,求得點(diǎn)的軌跡方程是橢圓,從而求得存在兩定點(diǎn)和點(diǎn).

型】解答
結(jié)束】
21

【題目】已知,.

(Ⅰ)若,求的極值;

(Ⅱ)若函數(shù)的兩個(gè)零點(diǎn)為,記,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)時(shí),,現(xiàn)已畫出函數(shù)在y軸左側(cè)的圖象,如圖所示,請(qǐng)根據(jù)圖象.

1)將函數(shù)的圖象補(bǔ)充完整,并寫出函數(shù)的遞增區(qū)間;

2)寫出函數(shù)的解析式;

3)若函數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張經(jīng)營(yíng)某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷售量(百件)與銷售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當(dāng)銷售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤(rùn)為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問(wèn)銷售單價(jià)定為多少元時(shí),該專賣店可獲得最大月利潤(rùn)?(注:利潤(rùn)=收入-支出)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),為偶函數(shù),且(e是自然對(duì)數(shù)的底數(shù)).

1)分別求出的解析式;

2)記,請(qǐng)判斷的奇偶性和單調(diào)性,并分別說(shuō)明理由;

3)若存在,使得不等式能成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正三棱錐P-ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連結(jié)PE并延長(zhǎng)交AB于點(diǎn)G.

)證明:GAB的中點(diǎn);

)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案