(2011•黃岡模擬)已知D是由不等式組
x-y≥0
x+y≥0
所確定的平面區(qū)域,則圓x2+y2=4在區(qū)域D內(nèi)的面積為( 。
分析:先依據(jù)不等式組
x-y≥0
x+y≥0
,結合二元一次不等式(組)與平面區(qū)域的關系畫出其表示的平面區(qū)域,再利用圓的方程畫出圖形,最后利用扇形面積公式計算即可.
解答:解:如圖陰影部分表示
x-y≥0
x+y≥0
,確定的平面區(qū)域,所以陰影部分扇形即為所求.
∵直線x-y=0和直線x+y=0互相垂直,∴扇形的圓心角為90°,扇形的面積是圓的面積的四分之一,
∴圓x2+y2=4在區(qū)域D內(nèi)的面積為π.
故選B.
點評:本題主要考查了用平面區(qū)域二元一次不等式組,以及簡單的轉化思想和數(shù)形結合的思想,屬中檔題.借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結合思想、化歸思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知:如圖|
OA
|=|
OB
|=1,
OA
OB
的夾角為120°,
OC
OA
的夾角為30°,若
OC
OA
OB
(λ,μ∈R)則
λ
μ
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)已知{an}是正數(shù)組成的數(shù)列,a1=1,且點(
an
,an+1)(n∈N*)
在函數(shù)y=x2+1的圖象上.數(shù)列{bn}滿足b1=0,bn+1=bn+3an(n∈N*).
(I)求數(shù)列{an},{bn}的通項公式;
(II)若cn=anbncosnπ(n∈N*),求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)在△ABC所在的平面內(nèi)有一點P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面積與△ABC的面積之比是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•黃岡模擬)分形幾何學是美籍法國數(shù)學家伯努瓦••B•曼德爾布羅特(Benoit B.Mandelbrot) 在20世紀70年代創(chuàng)立的一門新學科,它的創(chuàng)立,為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.下圖按照的分形規(guī)律生長成一個樹形圖,則第10行的空心圓點的個數(shù)是( 。

查看答案和解析>>

同步練習冊答案