若函數(shù)f(x)=的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是   
【答案】分析:利用該函數(shù)的被開(kāi)方數(shù)大于等于零得出該函數(shù)有意義需滿(mǎn)足的不等式,結(jié)合恒成立問(wèn)題得出字母m滿(mǎn)足的不等式
解答:解:依題意,當(dāng)x∈R時(shí),mx2-6mx+m+8≥0恒成立.
當(dāng)m=0時(shí),x∈R;
當(dāng)m≠0時(shí),,解之得0<m≤1.
故答案為0≤m≤1.
點(diǎn)評(píng):本題考查偶次根式的定義域的求解,考查不等式恒成立問(wèn)題的解決辦法,關(guān)鍵要進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線(xiàn)的斜率為0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求證:an≥n+2;
②若a1=4,試比較
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線(xiàn)的斜率為0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求證:an≥n+2;
②若a1=4,試比較
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:模擬題 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線(xiàn)的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省武漢市黃陂一中高三數(shù)學(xué)滾動(dòng)檢測(cè)試卷3(8.20)(解析版) 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線(xiàn)的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省南充高中高三第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線(xiàn)的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案