若f(x)=|x|(x∈R),則下列函數(shù)說(shuō)法正確的是( 。
A、f(x)為奇函數(shù)
B、f(x)奇偶性無(wú)法確定
C、f(x)為非奇非偶
D、f(x)是偶函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性的定義即可得到結(jié)論.
解答: 解:∵f(x)=|x|,
∴f(-x)=|-x|=|x|=f(x),即函數(shù)f(x)是偶函數(shù),
故選:D
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)的奇偶性的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
(
1
2
)x-1,  (x≤0)
-x2+2x, (x>0)
,對(duì)于下列命題:
①函數(shù)f(x)的最小值為0;
②函數(shù)f(x)在R上是單調(diào)遞減函數(shù);
③若f(x)>1,則x<-1;  
④若函數(shù)y=f(x)-a有三個(gè)零點(diǎn),則a的取值范圍是0<a<1.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)-1≤x<3時(shí),f(x)=x,當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,.則f(1)+f(2)+f(3)+…f(2012)=( 。
A、335B、338
C、1678D、2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知直線l的一個(gè)方向向量的坐標(biāo)為
I
=(1,-1,2)且過(guò)點(diǎn)M(3,1,4),那么以下各點(diǎn)中在直線l上的是( 。
A、(3,-1,2)
B、(6,-1,8)
C、(3,-1,8)
D、(5,-1,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={0},B={2,m},且A∪B={-1,0,2},則實(shí)數(shù)m等于( 。
A、-1B、1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( 。
A、f(x)=x+
1
x
B、f(x)=x2-
1
x
C、f(x)=
1-x2
D、f(x)=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中既是周期函數(shù),又在區(qū)間[-1,0]上單調(diào)遞減的是(  )
A、f(x)=sin|x|
B、f(x)=tan|x|
C、f(x)=|sinx|
D、f(x)=|cosx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,隨x的增大,增長(zhǎng)速度最快的是( 。
A、y=50(x∈Z)
B、y=1 000x
C、y=0.4•2x-1
D、y=
1
100000
•ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列方程在(0,1)內(nèi)存在實(shí)數(shù)解的是( 。
A、x2+x-3=0
B、
1
x
+1=0
C、
1
2
x+lnx=0
D、x2-lgx=0

查看答案和解析>>

同步練習(xí)冊(cè)答案