已知A,B,P為橢圓
x2
m2
+
y2
n2
=1(m,n>0)上不同的三點(diǎn),且A,B連線經(jīng)過坐標(biāo)原點(diǎn),若直線PA,PB的斜率乘積kPA•kPB=-2,則該橢圓的離心率為______.
根據(jù)雙曲線的對(duì)稱性可知A,B關(guān)于原點(diǎn)對(duì)稱,
設(shè)A(x1,y1),B(-x1,-y1),P(x,y),
x12
m2
-
y12
n2
=1,有kPA•kPB=-
m2
n2
=-2,∴
m2
n2
=2.
∴e=
1-
n2
m2
=
1-
1
2
=
2
2

故答案為:
2
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)A(-
3
,0)
,B是圓C:(x-
3
)2+y2=16
(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)是中心在原點(diǎn)、焦點(diǎn)在x軸上的橢圓C的右焦點(diǎn),\直線l:x=4是橢圓C的右準(zhǔn)線,F(xiàn)到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點(diǎn)P是橢圓C上動(dòng)點(diǎn),PM⊥l,垂足為M.是否存在點(diǎn)P,使得△FPM為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若方程
x2
m-1
+
y2
3-m
=1
表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
2
+y2=1
的左右焦點(diǎn)分別為F1,F(xiàn)2,若過點(diǎn)P(0,-2)及F1的直線交橢圓于A,B兩點(diǎn),求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(2手11•浙江)設(shè)F1,F(xiàn)2分別為橢圓
x2
3
+y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若
F1A
=5
F2B
;則點(diǎn)A的坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

請(qǐng)閱讀以下材料,然后解決問題:
①設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為m短半軸長(zhǎng)為b,則橢圓的面積為πab
②我們把由半橢圓C1
y2
b2
+
x2
c2
=1(x≤0)與半橢圓C2
x2
a2
+
y2
b2
=1(x≥0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0
如圖,設(shè)點(diǎn)F0,F(xiàn)1,F(xiàn)2是相應(yīng)橢圓的焦點(diǎn),A1,A2和B1,B2是“果圓”與x,y軸的交點(diǎn),若△F0F1F2是邊長(zhǎng)為1的等邊三角形,則上述“果圓”的面積為:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
,左焦點(diǎn)為E,右焦點(diǎn)為F,上頂點(diǎn)為B,若△BEF為等邊三角形,則此橢圓的離心率為( 。
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)A的坐標(biāo)為(3,1),點(diǎn)P在拋物線y2=4x上移動(dòng),F(xiàn)為拋物線的焦點(diǎn),則|PF|+|PA|的最小值為(  )
A.3B.4C.5D.
5
+2

查看答案和解析>>

同步練習(xí)冊(cè)答案