16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+2{x}^{2}-x,0<x<1}\\{lnx,x≥1}\end{array}\right.$,對(duì)任意t∈(0,+∞),不等式f(t)<kt恒成立,則實(shí)數(shù)k的取值范圍是$(\frac{1}{e},+∞)$.

分析 結(jié)合函數(shù)的圖象和函數(shù)值,可判斷只需y=lnt在y=kt的下方,求出臨界值即相切時(shí)的k的值即可.

解答 解:當(dāng)0<x<1時(shí),f(x)<0,
當(dāng)x≥1時(shí),f(x)≥0,
對(duì)任意t∈(0,+∞),不等式f(t)<kt恒成立,
故函數(shù)y=f(t)在函數(shù)y=kt的下方,
∴只需y=lnt在y=kt的下方,
∴當(dāng)兩曲線相切時(shí),設(shè)切點(diǎn)為橫坐標(biāo)為t0
∴k=$\frac{1}{{t}_{0}}$,lnt0=$\frac{1}{{t}_{0}}$t0
t0=$\frac{1}{e}$,
∴實(shí)數(shù)k的取值范圍是$(\frac{1}{e},+∞)$.

點(diǎn)評(píng) 考查了分段函數(shù)的圖象和利用圖象解決恒成立問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.將點(diǎn)的直角坐標(biāo)(-$\sqrt{6}$,$\sqrt{6}$,2)化為柱坐標(biāo)為(2$\sqrt{3}$,$\frac{3π}{4}$,2),化為球坐標(biāo)為(4,$\frac{π}{3}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)f(x)=$\sqrt{1+2sinx}$,則f(x)的單調(diào)遞增區(qū)間是[2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)f(x)=($\frac{1}{1+x}$-1)lnx的極值點(diǎn)為x=x0,記e≈2.71828,給出下列4個(gè)式子的序號(hào):
①f(x0)<x0; 
②f(x0)>x0
③ef(x0)<1;
 ④e2f(x0)>1,
其中,正確的序號(hào)是( 。
A.①③B.②④C.D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩個(gè)頂點(diǎn)三等分焦距,則雙曲線的離心率為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.口袋中有質(zhì)地、大小完全相同的5個(gè)球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲,甲先摸出一個(gè)球,記下編號(hào),放回后乙再摸一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)的和為偶數(shù)算甲贏,否則算乙贏.
(Ⅰ)求編號(hào)和為6的事件發(fā)生的概率;
(Ⅱ)這種游戲規(guī)則公平嗎?試說(shuō)明理由;
(Ⅲ)如果甲摸出球后不放回,則游戲?qū)φl(shuí)有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在平面直角坐標(biāo)系xOy中,已知點(diǎn)Q(1,2),P是動(dòng)點(diǎn),且三角形POQ的三邊所在直線的斜率滿足$\frac{1}{{k}_{OP}}$+$\frac{1}{{k}_{OQ}}$=$\frac{1}{{k}_{PQ}}$.
(1)求點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)D(1,0)任作兩條互相垂直的直線l1,l2,分別交軌跡C于點(diǎn)A,B和M,N,設(shè)線段AB,MN的中點(diǎn)分別為E,F(xiàn)求證:直線EF恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.拋物線y 2=4x上一點(diǎn)M到焦點(diǎn)的距離為3,則點(diǎn)M的橫坐標(biāo)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.拋物線y2=4x上的點(diǎn)P到拋物線的準(zhǔn)線的距離為d1,到直線3x-4y+9=0的距離為d2,則d1+d2的最小值為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{6}{5}$C.2D.$\frac{12}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案