11.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩個(gè)頂點(diǎn)三等分焦距,則雙曲線的離心率為(  )
A.4B.3C.2D.1

分析 由題意知,兩個(gè)頂點(diǎn)三等分焦距,得出a與c的關(guān)系,即可計(jì)算得解.

解答 解:∵雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的兩個(gè)頂點(diǎn)三等分焦距,
∴2a=$\frac{1}{3}$2c,c=3a,
∴e=$\frac{c}{a}=3$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的幾何性質(zhì)的應(yīng)用,考查了思想結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.長方體長、寬、高之比為2:3:4,全面積為208,長方體的體積為192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.將紅、黃、藍(lán)、黑四只鉛筆分給三名同學(xué),每名同學(xué)至少分到一支鉛筆,且紅、黃兩只鉛筆不能分給同一名同學(xué),則不同的分法種數(shù)為(  )
A.12B.20C.30D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(-1,1),$\overrightarrow{a}+\overrightarrow$=(3,4),求向量$\overrightarrow$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=axlnx(a≠0,a∈R).
(1)若函數(shù)f(x)有極小值-$\frac{1}{e}$,求f(x)的單調(diào)函數(shù);
(2)證明:當(dāng)a>0時(shí),f(x)≥a(x-1);
(3)當(dāng)x∈(1,e)是,不等式$\frac{x-1}{a}$<lnx恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{3}+2{x}^{2}-x,0<x<1}\\{lnx,x≥1}\end{array}\right.$,對(duì)任意t∈(0,+∞),不等式f(t)<kt恒成立,則實(shí)數(shù)k的取值范圍是$(\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(4,3),點(diǎn)B是圓(x+1)2+y2=4上的動(dòng)點(diǎn),則線段AB的中點(diǎn)M的軌跡方程是(  )
A.${(x-\frac{3}{2})^2}+{(y-\frac{3}{2})^2}=1$B.${(x-\frac{3}{2})^2}+{(y-\frac{3}{2})^2}=4$C.(x-3)2+(y-3)2=1D.(x-3)2+(y-3)2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.(x-$\frac{2}{x}$)n的展開式中只有第5項(xiàng)的二項(xiàng)式系數(shù)最大,則它的展開式中常數(shù)項(xiàng)是1120.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.執(zhí)行如圖所示的程序框圖,則輸出結(jié)果S=( 。
A.0B.-1C.$\frac{1-\sqrt{3}}{2}$D.$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案