5.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,若$\overrightarrow{a}$•$\overrightarrow$=-3,則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為$\frac{2π}{3}$.

分析 設(shè)$\overrightarrow{a}$與$\overrightarrow$夾角的大小為θ,利用兩個向量的數(shù)量積的定義,求得cosθ的值,可得$\overrightarrow{a}$與$\overrightarrow$夾角的大小θ的值.

解答 解:設(shè)$\overrightarrow{a}$與$\overrightarrow$夾角的大小為θ,θ∈[0,π],∵$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cosθ=3•2•cosθ=-3,
∴cosθ=-$\frac{1}{2}$,θ=$\frac{2π}{3}$,
故答案為:$\frac{2π}{3}$.

點評 本題主要考查兩個向量的數(shù)量積的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在平面直角坐標(biāo)系xOy中,已知點P在曲線Γ:y=$\sqrt{1-\frac{{x}^{2}}{4}}$(x≥0)上,曲線Γ與x軸相交于點B,與y軸相交于點C,點D(2,1)和點E(1,0)滿足$\overrightarrow{OD}$=λ$\overrightarrow{CE}$+μ$\overrightarrow{OP}$(λ,μ∈R),則λ+μ的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且滿足b2=ac,cosB=$\frac{3}{4}$.
(1)求$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(2)設(shè)$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求三邊a、b、c的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將乘積(a1+a2+a3+a4)(b1+b2)(c1+a2+a3)展開式多項式后的項數(shù)是( 。
A.4+2+3B.4×2×3C.5+3+4D.5×3×4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.角A是直角△ABC的一個內(nèi)角,且$sinA=\frac{7}{8}$,則cosA=$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)$z=\frac{1+i}{{{{({1-i})}^2}}}$,則z的虛部為(  )
A.$\frac{1}{2}$B.$\frac{1}{2}i$C.1D.i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=lg\frac{x+1}{2x-a}+lga$(a是實常數(shù))
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性與實數(shù)a的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的定義域
(1)f(x)=$\sqrt{x-1}$•$\sqrt{2-x}$
(2)$f(x)=\frac{{\sqrt{x-1}}}{2x-9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{\frac{1}{3^x},x≤0}\end{array}}\right.$,則$f(f(\frac{1}{4}))$=( 。
A.9B.$\frac{1}{9}$C.$\frac{2}{9}$D.$-\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案