16.(1)求和:Sn=1$\frac{1}{2}+2\frac{1}{4}+3\frac{1}{8}+…+({n+\frac{1}{2^n}})$.
(2)an=$\frac{1}{{n({n+2})}},n∈{N^+}$,求此數(shù)列的前n項(xiàng)和Sn

分析 (1)分組分別利用等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
(2)利用“裂項(xiàng)求和”方法即可得出.

解答 解:(1)Sn=(1+2+…+n)+$(\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n}})$=$\frac{n(n+1)}{2}$+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=$\frac{n(n+1)}{2}$+1-$\frac{1}{{2}^{n}}$.
(2)an=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴此數(shù)列的前n項(xiàng)和Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,三邊a,b,c成等比數(shù)列,a2,b2,c2成等差數(shù)列,則三邊a,b,c的關(guān)系為a=b=c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{{log}_2}x(x>0)}\\{g(x)(x<0)}\end{array}}\right.$,若f(x)為奇函數(shù),則$g(-\frac{1}{4})$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列求導(dǎo)數(shù)運(yùn)算正確的是( 。
A.${(x+\frac{1}{x})^'}=1+\frac{1}{x^2}$B.(lgx)′=$\frac{1}{xlge}$C.(3x)′=3xln3D.(x2cosx)′=-2xsinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“a=3”是“直線ax+2y+3a=0和直線3x+(a-1)y+7=0平行”的充分不必要條件.(“充分不必要”“必要不充分”“充要”“既不充分也不必要”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.證明下列不等式:
(1)已知a>b,e>f,c>0,求證f-ac<e-bc
(2)已知a>b>0,c<d<0,求證:$\root{3}{\frac{a}kzmuhfi}$<$\root{3}{\frac{c}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知等差數(shù)列{an}的公差d>0,則下列四個(gè)命題:
①數(shù)列{an}是遞增數(shù)列;             
②數(shù)列{nan}是遞增數(shù)列;
③數(shù)列$\left\{{\frac{a_n}{n}}\right\}$是遞增數(shù)列;            
④數(shù)列{an+3nd}是遞增數(shù)列;
其中正確命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1.
(1)求$\overrightarrow{a}$•$\overrightarrow$;
(2)|$\overrightarrow{a}$-2$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)g(x)=-x2+2lnx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案