精英家教網 > 高中數學 > 題目詳情

某人有樓房一幢,室內面積共計180m2,擬分割成兩類房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且假定游客能住滿客房,他應隔出大房間和小房間各多少間,才能獲得最大收益?

解:設分割大房間為x間,小房間為y間,收益為z元
根據題意得:
求:z=200x+150y的最大值.
作出約束條件表示的平面區(qū)域
把目標函數z=200x+150y化為
平移直線,直線越往上移,z越大,
所以當直線經過M點時,z的值最大,
解方程組,
因為最優(yōu)解應該是整數解,通過調整得,當直線過M'(3,8)和M''(0,12)時z最大
所以當大房間為3間,小房間為8間或大房間為0間,小房間為12間時,可獲最大的收益為1800元.
分析:先設分割大房間為x間,小房間為y間,收益為z元,列出約束條件,再根據約束條件畫出可行域,設z=200x+150y,再利用z的幾何意義求最值,只需求出直線z=200x+150y過可行域內的整數點時,從而得到z值即可.
點評:在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關量的關系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標函數Z與直線截距之間的關系?④使用平移直線法求出最優(yōu)解?⑤還原到現實問題中.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某人有樓房一幢,室內面積共計180m2,擬分割成兩類房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應隔出大房間和小房間各多少間,每天能獲得最大的房租收益?(注:設分割大房間為x間,小房間為y間,每天的房租收益為z元)
(1)寫出x,y所滿足的線性約束條件;
(2)寫出目標函數的表達式;
(3)求x,y各為多少時,每天能獲得最大的房租收益?每天能獲得最大的房租收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

某人有樓房一幢,室內面積共180m2,擬分隔成兩類房間作為旅游客房.大房間每間面積為18m2,可住游客5名,每名游客每天住宿費為40元;小房間每間面積為15m2,可住游客3名,每名游客每天住宿費為50元;裝修大房間每間需1000元,裝修小房間每間需600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應隔出大房間和小房間各多少間,能獲得最大收益?最大收益是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

某人有樓房一幢,室內面積共計180m2,擬分割成兩類房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且假定游客能住滿客房,他應隔出大房間和小房間各多少間,才能獲得最大收益?

查看答案和解析>>

科目:高中數學 來源: 題型:

某人有樓房一幢,室內面積共180㎡,擬分隔兩類房間作為旅游客房.大每間面積為18㎡,可住游客5名,每名游客每天住宿費為40元;小房間每間面積為15㎡,可住游客3名,每名游客每天住宿費為50元;裝修大房間每間需1000元,裝修小房間每間需600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應隔出大房間和小房間各多少間,能獲得最大收益?

查看答案和解析>>

科目:高中數學 來源:2014屆福建省福州外國語學校高二上學期期中考試數學試卷(解析版) 題型:解答題

(本小題14分)某人有樓房一幢,室內面積共計180m2,擬分割成兩類房間作為旅游客房,大房間每間面積為18m2,可住游客5名,每名游客每天住宿費40元;小房間每間面積為15m2,可以住游客3名,每名游客每天住宿費50元;裝修大房間每間需要1000元,裝修小房間每間需要600元.如果他只能籌款8000元用于裝修,且游客能住滿客房,他應隔出大房間和小房間各多少間,每天能獲得最大的房租收益?(注:設分割大房間為x間,小房間為y間,每天的房租收益為z元)

(1)寫出x,y所滿足的線性約束條件;  

(2)寫出目標函數的表達式;

(3)求x,y各為多少時,每天能獲得最大的房租收益?每天能獲得最大的房租收益是多少?

 

查看答案和解析>>

同步練習冊答案