已知函數(shù)f(x)=sinx,g(x)=mx- (m為實數(shù)).

(1)求曲線y=f(x)在點P(),f()處的切線方程;

(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;

(3)若m=1,證明:當x>0時,f(x)<g(x)+.

 

(1)x-y+1-=0

(2)則g(x)的單調(diào)遞減區(qū)間是(-∞,-),(,+∞).

(3)見解析

【解析】【解析】
(1)由題意得所求切線的斜率k=f′()=cos.

切點P(,),則切線方程為y- (x-),

即x-y+1-=0.

(2)g′(x)=m-x2.

①當m≤0時,g′(x)≤0,則g(x)的單調(diào)遞減區(qū)間是(-∞,+∞);

②當m>0時,令g′(x)<0,解得x<-或x>,

則g(x)的單調(diào)遞減區(qū)間是(-∞,-),(,+∞).

(3)證明:當m=1時,g(x)=x-.

令h(x)=x-sinx,x∈[0,+∞),h′(x)=1-cosx≥0,

則h(x)是[0,+∞)上的增函數(shù).

故當x>0時,h(x)>h(0)=0,即sinx<x,f(x)<g(x)+.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-4二次函數(shù)與冪函數(shù)(解析版) 題型:選擇題

設函數(shù)f(x)=-2x2+4x在區(qū)間[m,n]上的值域是[-6,2],則m+n的取值所組成的集合為(  )

A.[0,3] B.[0,4] C.[-1,3] D.[1,4]

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-1函數(shù)的概念、定義域和值域(解析版) 題型:解答題

甲同學家到乙同學家的途中有一公園,甲從家到公園的距離與乙從家到公園的距離都是2 km,甲10時出發(fā)前往乙家.如圖所示,表示甲從家出發(fā)到達乙家為止經(jīng)過的路程y(km)與時間x(分)的關系.試寫出y=f(x)的函數(shù)解析式.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-12導數(shù)的應用二(解析版) 題型:填空題

已知函數(shù)f(x)=(x2-3x+3)ex,設t>-2,函數(shù)f(x)在[-2,t]上為單調(diào)函數(shù)時,t的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-12導數(shù)的應用二(解析版) 題型:選擇題

函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為(  )

A.72 B.36 C.12 D.0

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-11導數(shù)的應用一(解析版) 題型:選擇題

函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為(  )

A.{x|x>0}

B.{x|x<0}

C.{x|x<-1或x>1}

D.{x|x<-1或0<x<1}

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:2-10導數(shù)的概念及運算(解析版) 題型:填空題

已知函數(shù)y=f(x)的導函數(shù)為f′(x)=5+cosx,且f(0)=0,如果f(1-x)+f(1-x2)<0,則實數(shù)x的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-8n次獨立重復實驗與二項分布(解析版) 題型:填空題

一盒中放有大小相同的10個小球,其中8個黑球、2個紅球,現(xiàn)甲、乙二人先后各自從盒子中無放回地任意抽取2個小球,已知甲取到了2個黑球,則乙也取到2個黑球的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:10-6幾何概型(解析版) 題型:選擇題

一數(shù)學興趣小組利用幾何概型的相關知識做試驗計算圓周率,他們向一個邊長為1米的正方形區(qū)域均勻撒豆,測得正方形區(qū)域有豆5120顆,正方形的內(nèi)切圓區(qū)域有豆4009顆,則他們所測得的圓周率約為(保留三位有效數(shù)字)(  )

A.3.13 B.3.14 C.3.15 D.3.16

 

查看答案和解析>>

同步練習冊答案