函數(shù)f(x)的定義域是R,f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為(  )

A.{x|x>0}

B.{x|x<0}

C.{x|x<-1或x>1}

D.{x|x<-1或0<x<1}

 

A

【解析】構(gòu)造函數(shù)g(x)=ex·f(x)-ex,

因為g′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,

所以g(x)=ex·f(x)-ex為R上的增函數(shù).

又因為g(0)=e0·f(0)-e0=1,

所以原不等式轉(zhuǎn)化為g(x)>g(0),

解得x>0.故選A.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:解答題

已知函數(shù)f(x)對任意實數(shù)x,y恒有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)<0,又f(1)=-2.

(1)判斷f(x)的奇偶性;

(2)求證:f(x)是R上的減函數(shù);

(3)求f(x)在區(qū)間[-3,3]上的值域;

(4)若?x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-1函數(shù)的概念、定義域和值域(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=,則不等式f(x)>f(1)的解集是(  )

A.(-3,1)∪(3,+∞) B.(-3,1)∪(2,+∞)

C.(-1,1)∪(3,+∞) D.(-∞,-3)∪(1,3)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:選擇題

若函數(shù)f(x)=x3-3x在(a,6-a2)上有最小值,則實數(shù)a的取值范圍是(  )

A.(-,1) B.[-,1)

C.[-2,1) D.(-2,1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:解答題

已知函數(shù)f(x)=sinx,g(x)=mx- (m為實數(shù)).

(1)求曲線y=f(x)在點P(),f()處的切線方程;

(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;

(3)若m=1,證明:當(dāng)x>0時,f(x)<g(x)+.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )

A.(0,1] B.[1,+∞)

C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運算(解析版) 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.

(1)求曲線f(x)在點(2,f(2))處的切線方程;

(2)求經(jīng)過點A(2,-2)的曲線f(x)的切線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨立重復(fù)實驗與二項分布(解析版) 題型:填空題

在國慶期間,甲去北京旅游的概率為,乙、丙去北京旅游的概率分別為.假定三人的行動相互之間沒有影響,那么這段時間內(nèi)至少有一人去北京旅游的概率________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-5古典概型(解析版) 題型:解答題

一個袋中有4個大小相同的小球,其中紅球1個,白球2個,黑球1個,現(xiàn)從袋中有放回地取球,每次隨機取1個.

(1)求連續(xù)取兩次都是白球的概率;

(2)若取1個紅球記2分,取1個白球記1分,取1個黑球記0分,求連續(xù)取兩次的分?jǐn)?shù)之和為2的概率.

 

查看答案和解析>>

同步練習(xí)冊答案