【題目】若直線 與直線2x+3y﹣6=0的交點位于第一象限,則直線l的傾斜角的取值范圍(
A.
B.
C.
D.

【答案】B
【解析】解:聯(lián)立兩直線方程得: , 將①代入②得:x= ③,把③代入①,求得y= ,
所以兩直線的交點坐標為( , ),
因為兩直線的交點在第一象限,所以得到
由①解得:k>﹣ ;由②解得k> 或k<﹣ ,所以不等式的解集為:k> ,
設(shè)直線l的傾斜角為θ,則tanθ> ,所以θ∈( , ).
方法二、∵直線l恒過定點(0,﹣ ),作出兩直線的圖象.,
設(shè)直線2x+3y﹣6=0與x軸交于點A,與y軸交于點B.從圖中看出,
斜率kAP<k<+∞,即 <k<+∞,
故直線l的傾斜角的取值范圍應(yīng)為( , ).
故選B.
聯(lián)立兩直線方程到底一個二元一次方程組,求出方程組的解集即可得到交點的坐標,根據(jù)交點在第一象限得到橫縱坐標都大于0,聯(lián)立得到關(guān)于k的不等式組,求出不等式組的解集即可得到k的范圍,然后根據(jù)直線的傾斜角的正切值等于斜率k,根據(jù)正切函數(shù)圖象得到傾斜角的范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線 (t為參數(shù)), (θ為參數(shù)),
(1)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點P對應(yīng)的參數(shù)為 ,Q為C2上的動點,求PQ中點M到直線 (t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在△中, 點邊上, .

(Ⅰ)求;

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,我國電子商務(wù)蓬勃發(fā). 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達516億元人民幣,與此同時,相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng). 評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)滿意的交易為80次.

(Ⅰ) 根據(jù)已知條件完成下面列聯(lián)表,并回答能有99%的把握認為“網(wǎng)購者對商品滿意與服務(wù)滿意之間有關(guān)系”?

對服務(wù)滿意

對服務(wù)不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設(shè)對商品和服務(wù)滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望.

附:(其中為樣本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角A、B、C的對邊分別為,已知向量且滿足

(1)求角A的大;

(2)試判斷的形狀

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,已知BC邊上的高所在直線的方程為x﹣2y+1=0,∠A平分線所在直線的方程為y=0,若點B的坐標為(1,2), (Ⅰ)求直線BC的方程;
(Ⅱ)求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn . 若對任意正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項a1=1,公差d<0.若{an}是“H數(shù)列”,求d的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復還迎弩馬.”則現(xiàn)有如下說法:

①弩馬第九日走了九十三里路;

②良馬前五日共走了一千零九十五里路;

③良馬和弩馬相遇時,良馬走了二十一日.

則以上說法錯誤的個數(shù)是( )個

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分數(shù)在以上(含的同學獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖(見下圖).

(1)填寫下面的列聯(lián)表,能否有超過的把握認為獲獎與學生的文理科有關(guān)?

(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學生中,任意抽取名學生,獲獎學生人數(shù)為,求的分布列及數(shù)學期望.

文科生

理科生

合計

獲獎

不獲獎

合計

附表及公式:

,其中

查看答案和解析>>

同步練習冊答案