過圓上一點P作切線分別與x軸、y軸的正半軸交于A、B兩點,則的最小值為

A.2                B.3           C.        D. 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點F1,F(xiàn)2為雙曲線C:x2-
y2
b2
=1(b>0)的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線于點M,且∠MF1F2=30°,圓O的方程為x2+y2=b2
(1)求雙曲線C的方程;
(2)過圓O上任意一點Q(x0,y0)作切線l交雙曲線C于A,B兩個不同點,AB中點為M,求證:|AB|=2|OM|;
(3)過雙曲線C上一點P作兩條漸近線的垂線,垂足分別是P1和P2,求
PP1
PP2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省聯(lián)盟高三第一次聯(lián)考數(shù)學(xué)文卷 題型:解答題

 

本小題滿分14分)

已知橢圓的左、右焦點分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且的最小值不小于。

(1)證明:橢圓上的點到F2的最短距離為;

(2)求橢圓的離心率e的取值范圍;

(3)設(shè)橢圓的短半軸長為1,圓F2軸的右交點為Q,過點Q作斜率為的直線與橢圓相交于A、B兩點,若OA⊥OB,求直線被圓F2截得的弦長S的最大值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012年山東省濟寧市高二上學(xué)期期中考試理科數(shù)學(xué) 題型:解答題

. (滿分12分)

 矩形ABCD的對角線AC、BD相交于點M (2,0),AB邊所在直線的方程為:.

若點在直線AD上.

(1)求點A的坐標及矩形ABCD外接圓的方程;

(2)過直線上一點P作(1)中所求圓的切線,設(shè)切點為E、F,求四邊形PEMF面積的最小值,并求此時的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

已知橢圓的左、右焦點分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且的最小值不小于。

(1)證明:橢圓上的點到F2的最短距離為

(2)求橢圓的離心率e的取值范圍;

(3)設(shè)橢圓的短半軸長為1,圓F2軸的右交點為Q,過點Q作斜率為的直線與橢圓相交于A、B兩點,若OA⊥OB,求直線被圓F2截得的弦長S的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市徐匯區(qū)高三4月學(xué)習(xí)能力診斷數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點F1,F(xiàn)2為雙曲線C:x2-=1(b>0)的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線于點M,且∠MF1F2=30°,圓O的方程為x2+y2=b2
(1)求雙曲線C的方程;
(2)過圓O上任意一點Q(x,y)作切線l交雙曲線C于A,B兩個不同點,AB中點為M,求證:|AB|=2|OM|;
(3)過雙曲線C上一點P作兩條漸近線的垂線,垂足分別是P1和P2,求的值.

查看答案和解析>>

同步練習(xí)冊答案