精英家教網 > 高中數學 > 題目詳情

已知集合A={x||x|≤1},B={x|-2≤x<數學公式},則A∩B=


  1. A.
    {x|-2≤x≤1}
  2. B.
    {x|-1≤x<數學公式}
  3. C.
    {x|-2≤x<數學公式}
  4. D.
    {x|-2≤x<-1}
B
分析:解絕對值不等式求出集合A,結合已知中B={x|-2≤x<},根據集合交集運算定義,即可得到答案.
解答:∵集合A={x||x|≤1}={x|-1≤x≤1},
B={x|-2≤x<},
∴A∩B={x|-1≤x<},
故選B
點評:本題考查的知識點是集合的交集及其運算,其中根據“小于看中間,大于看兩邊”的原則,求出集合A是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實數a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實數k的取值范圍.

查看答案和解析>>

同步練習冊答案