已知拋物線C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點M
(1)求點M到拋物線C1的準(zhǔn)線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xoy中,已知橢圓C1:的左焦點為F1(-1,0),且點P(0,1)在C1上。
(1)求橢圓C1的方程;
(2)設(shè)直線l同時與橢圓C1和拋物線C2:相切,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點,對稱軸為坐標(biāo)軸,焦點在軸上,有一個頂點為,.
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,線段的中點為,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè),過點作直線(不與軸重合)交橢圓于、兩點,連結(jié)、分別交直線于、兩點,試探究直線、的斜率之積是否為定值,若為定值,請求出;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線:和:的焦點分別為,交于兩點(為坐標(biāo)原點),且.
(1)求拋物線的方程;
(2)過點的直線交的下半部分于點,交的左半部分于點,點坐標(biāo)為,求△面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的右焦點,長軸的左、右端點分別為,且.
(1)求橢圓的方程;
(2)過焦點斜率為()的直線交橢圓于兩點,弦的垂直平分線與軸相交于點. 試問橢圓上是否存在點使得四邊形為菱形?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:,點A、B在拋物線C上.
(1)若直線AB過點M(2p,0),且=4p,求過A,B,O(O為坐標(biāo)原點)三點的圓的方程;
(2)設(shè)直線OA、OB的傾斜角分別為,且,問直線AB是否會過某一定點?若是,求出這一定點的坐標(biāo),若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦距為,過右焦點和短軸一個端點的直線的斜率為,為坐標(biāo)原點.
(1)求橢圓的方程.
(2)設(shè)斜率為的直線與相交于、兩點,記面積的最大值為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓G:.過點(m,0)作圓的切線l交橢圓G于A,B兩點.
(1)求橢圓G的焦點坐標(biāo)和離心率;
(2)將表示為m的函數(shù),并求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com