設(shè)等比數(shù)列{an}的前n項和為Sn.已知an+1=2Sn+2()
(1)求數(shù)列{an}的通項公式;
(2)在an與an+1之間插入n個數(shù),使這n+2個數(shù)組成一個公差為dn的等差數(shù)列,
①在數(shù)列{dn}中是否存在三項dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項,若不存在,說明理由;
②求證:.
(1)   (2)見解析

試題分析:
(1)利用Sn與an之間的關(guān)系,即可得到關(guān)于an+1,an的遞推式,證明an為等比數(shù)列,且可以知道公比,當(dāng)n=1時,可以得到a1與a2之間的關(guān)系,在根據(jù)an等比數(shù)列,可以消掉a2得到首項的值,進(jìn)而得到通項公式.
(2)根據(jù)等差數(shù)列公差與項之間的關(guān)系(),可以得到,帶入an得到dn的通項公式.
①假設(shè)存在,dm,dk,dp成等比數(shù)列,可以得到關(guān)于他們的等比中項式子,把dn的通項公式帶入計算可以得到,則m,k,p既成等差數(shù)列也是等比數(shù)列,所以三者相等,與數(shù)列{dn}中是否存在三項dm,dk,dp(不相等)矛盾,所以是不存在的.
②利用(2)所得求出的通項公式,再利用錯位相減可以求得,利用不等式的性質(zhì)即可得到證明原式.
試題解析:
(1)由,
可得:,
兩式相減:.        2分
,
因為數(shù)列是等比數(shù)列,所以,故.
所以.        4分
(2)由(1)可知,
因為:,故:.        6分
①假設(shè)在數(shù)列中存在三項(其中成等差數(shù)列)成等比數(shù)列,
則:,即:,
(*)      8分
因為成等差數(shù)列,所以,
(*)可以化簡為,故,這與題設(shè)矛盾.
所以在數(shù)列中不存在三項(其中成等差數(shù)列)成等比數(shù)列.10分
②令,
,
      11分
兩式相減:
      13分
.      14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:各項均為正數(shù)的數(shù)列的前項和為,且對任意正整數(shù),點都在直線上.求數(shù)列的通項公式;
附加:若設(shè) 求:數(shù)列項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和為,對一切正整數(shù),點都在函數(shù)的圖象上.
(1)求;
(2)求數(shù)列的通項公式;
(3)若,求證數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和為,且,;數(shù)列中,在直線上.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前和為,求;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列{an}滿足an+1+(-1)n an=2n-1,則{an}的前60項和為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列的通項公式為 ,,是數(shù)列的前項和,則的最大值為(     )
A.280B.300C.310D.320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(1+2n)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的前項和為,則的值是(      )
A.B.73C.D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是由正數(shù)組成的等比數(shù)列,表示的前項的和,若,,則的值是 (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案