【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5


(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關(guān)于x的線性回歸方程 = x+ ,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測加工10個零件需要多少時間? 參考公式:回歸直線 =bx+a,其中b= = ,a= ﹣b

【答案】
(1)解:作出散點圖如下:


(2)解: = (2+3+4+5)=3.5, = (2.5+3+4+4.5)=3.5,

=54, xiyi=52.5

∴b= =0.7,a=3.5﹣0.7×3.5=1.05,

∴所求線性回歸方程為:y=0.7x+1.05


(3)解:當(dāng)x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時).

∴加工10個零件大約需要8.05個小時


【解析】(1)根據(jù)表中所給的數(shù)據(jù),可得散點圖;(2)求出出橫標(biāo)和縱標(biāo)的平均數(shù),得到樣本中心點,求出對應(yīng)的橫標(biāo)和縱標(biāo)的積的和,求出橫標(biāo)的平方和,做出系數(shù)和a的值,寫出線性回歸方程.(3)將x=10代入回歸直線方程,可得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,CD=2 ,E、F分別是AB、PD的中點.
(1)求證:AF∥平面PCE;
(2)求證:平面PCE⊥平面PCD;
(3)求四面體PEFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】機器人(阿法狗)在下圍棋時,令人稱道的算法策略是:每一手棋都能保證在接下來的十幾步后,局面依然是滿意的.這種策略給了我們啟示:每一步相對完美的決策,對最后的勝利都會產(chǎn)生積極的影響.

下面的算法是尋找比較大的數(shù),現(xiàn)輸入正整數(shù)“42,61,8012,7918,82,5731,18“,從左到右依次為,其中最大的數(shù)記為,則 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(sinx,cosx), =(sinx,k), =(﹣2cosx,sinx﹣k).
(1)當(dāng)x∈[0, ]時,求| + |的取值范圍;
(2)若g(x)=( + ,求當(dāng)k為何值時,g(x)的最小值為﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)=lnx﹣ax+1.
(1)求f(x)的單調(diào)增區(qū)間.
(2)求出f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行六面體ABCD﹣A′B′C′D′,其中AB=4,AD=3,AA′=3,∠BAD=90°,∠BAA′=60°,∠DAA′=60°,則AC′的長為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù).

(1)若上單調(diào)遞增,求的取值范圍;

(2)令,將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象.區(qū)間滿足:上至少含有30個零點.在所有滿足上述條件的中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+3)=﹣f(x),且當(dāng)x∈[0,3)時,f(x)=log4(x+1),給出下列命題:
①f(2015)>f(2014);
②函數(shù)f(x)在定義域上是周期為3的函數(shù);
③直線x﹣3y=0與函數(shù)f(x)的圖象有2個交點;
④函數(shù)f(x)的值域為[0,1).
其中不正確的命題個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱的圓為.

(1)求圓的方程;

(2)過點作直線與圓交于兩點, 是坐標(biāo)原點,是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案