【題目】已知函數(shù),其中常數(shù)
.
(1)若在
上單調(diào)遞增,求
的取值范圍;
(2)令,將函數(shù)
的圖象向左平移
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)
的圖象.區(qū)間
滿足:
在
上至少含有30個(gè)零點(diǎn).在所有滿足上述條件的
中,求
的最小值.
【答案】(1);(2)
.
【解析】(1)因?yàn)楹瘮?shù)y=f(x)在上單調(diào)遞增,且
,
所以,且
,
所以.即
的取值范圍是
.
(2),
將的圖象向左平移
個(gè)單位,再向上平移1個(gè)單位后得到
的圖象,所以
.
令,得
或
,
所以兩個(gè)相鄰零點(diǎn)之間的距離為或
.
若b-a最小,則a和b都是零點(diǎn),
此時(shí)在區(qū)間[a,π+a],[a,2π+a],…,[a,mπ+a](m∈N*)上分別恰有3,5,…,2m+1個(gè)零點(diǎn),所以在區(qū)間[a,14π+a]上恰有29個(gè)零點(diǎn),
從而在區(qū)間(14π+a,b]上至少有一個(gè)零點(diǎn),
所以.
另一方面,在區(qū)間上恰有30個(gè)零點(diǎn),
因此,b-a的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,若
且f(x)在區(qū)間
上有最小值,無(wú)最大值,則ω的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知右焦點(diǎn)為的橢圓
關(guān)于直線
對(duì)稱的圖形過(guò)坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)且不垂直于
軸的直線與橢圓
交于兩點(diǎn)
,點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
.證明:直線
與
軸的交點(diǎn)為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:
零件的個(gè)數(shù)x(個(gè)) | 2 | 3 | 4 | 5 |
加工的時(shí)間y(小時(shí)) | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程 =
x+
,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間? 參考公式:回歸直線 =bx+a,其中b=
=
,a=
﹣b
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
:
的離心率是
,且直線
:
被橢圓
截得的弦長(zhǎng)為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與圓
:
相切:
(i)求圓的標(biāo)準(zhǔn)方程;
(ii)若直線過(guò)定點(diǎn)
,與橢圓
交于不同的兩點(diǎn)
、
,與圓
交于不同的兩點(diǎn)
、
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:方程x2﹣4x+m=0有實(shí)根,命題q:﹣1≤m≤5.若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=(kx+4)lnx﹣x(x>1),若f(x)>0的解集為(s,t),且(s,t)中只有一個(gè)整數(shù),則實(shí)數(shù)k的取值范圍為( )
A.( ﹣2,
﹣
)
B.( ﹣2,
﹣
]
C.( ﹣
,
﹣1]
D.( ﹣
,
﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+(2b﹣1)x+6b﹣a為偶函數(shù),且f(x+1)﹣f(x)=2x+1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(x)+λx,求函數(shù)g(x)在[0,1]內(nèi)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】各項(xiàng)為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足:Sn= an2+
an+
(n∈N*)
(1)求an
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 證明:對(duì)一切正整數(shù)n,都有Tn<
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com