設(shè)f(x)=3ax2+2bx+c,若a+b+c=0.f(0)>0,f(1)>0,

求證: (Ⅰ)a>0且-2<<-1;

(Ⅱ)方程f(x)=0在(0,1)內(nèi)有兩個實根.

證明:(I)因為

所以.

由條件,消去,得

;

由條件,消去,得

.

.

(II)拋物線的頂點坐標為

的兩邊乘以,得

.

又因為

所以方程在區(qū)間內(nèi)分別有一實根。

故方程內(nèi)有兩個實根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012年人教B版高中數(shù)學(xué)必修5 3.3 一元二次不等式及其解法練習(xí)卷(解析版) 題型:解答題

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0

求證:(1)a>0,-2<<-1

(2)函數(shù)f(x)在(0,1)內(nèi)有零點。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(Ⅰ)a>0且-2<<-1;

(Ⅱ)方程f(x)=0在(0,1)內(nèi)有兩個實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=3ax2+2bx+c若a+b+c=0,f(0)>0,f(1)>0,求證:

(Ⅰ)a>0且-2<<-1;

(Ⅱ)方程f(x)=0在(0,1)內(nèi)有兩個實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(20)設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求證:

    (Ⅰ)方程f(x)=0有實根;

    (Ⅱ)-2<<-1;

    (Ⅲ)設(shè)x1,x2是方程f(x)=0的兩個實根,則≤|x1-x2|<

查看答案和解析>>

同步練習(xí)冊答案