7.設(shè)θ為第二象限的角,cos($\frac{π}{2}$-θ)=$\frac{3}{5}$,則sin2θ=( 。
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{7}{25}$D.-$\frac{24}{25}$

分析 由已知求出sinθ,再由同角三角函數(shù)基本關(guān)系式求得cosθ,再由倍角公式得答案.

解答 解:∵cos($\frac{π}{2}$-θ)=$\frac{3}{5}$,
∴sin$θ=\frac{3}{5}$,又θ為第二象限的角,
∴cosθ=-$\sqrt{1-si{n}^{2}θ}=-\sqrt{1-(\frac{3}{5})^{2}}=-\frac{4}{5}$,
則sin2$θ=2sinθcosθ=2×\frac{3}{5}×(-\frac{4}{5})=-\frac{24}{25}$.
故選:D.

點評 本題考查三角函數(shù)的化簡求值,考查同角三角函數(shù)基本關(guān)系式及誘導(dǎo)公式的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列{an}滿足a1=3,a2=6,an+2=an+1-an(n∈N*),則a1000=( 。
A.3B.6C.-3D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx+$\frac{1-{x}^{2}}{{x}^{2}}$,a∈R.
(1)若f(x)的最小值為0,求實數(shù)a的值;
(2)證明:當(dāng)a=2時,不等式f(x)≥$\frac{1}{x}$-e1-x恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知復(fù)數(shù)z=a(1+i)-2為純虛數(shù),則實數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知隨機變量ξ的方差Dξ=4,且隨機變量η=5ξ-4,則Dη=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)拋物線y2=2x與過其焦點的直線交于A,B兩點,則$\overrightarrow{OA}$•$\overrightarrow{OB}$的值為(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{1}{{\sqrt{x+1}}}$+$\sqrt{4-2x}$的定義域為( 。
A.[一1,2]B.(一1,2]C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.拋物線y=x2上到直線2x-y-4=0距離最近的點的坐標(biāo)是( 。
A.(1,1)B.$({\frac{1}{2},\frac{1}{4}})$C.$({\frac{1}{3},\frac{1}{9}})$D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一質(zhì)點按規(guī)律s=2t3運動,則其在t=1時的瞬時速度為6m/s.

查看答案和解析>>

同步練習(xí)冊答案