如圖,A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸和短軸端點,點P在橢圓上,F(xiàn)、E是橢圓的左、右焦點,若EP∥AB,PF⊥OF,則該橢圓的離心率等于( 。
分析:由PFE∽△BOA,知
EF
OA
=
PF
OB
,所以a=
5
c,由此能求出其離心率.
解答:解:如圖,∵A、B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的長軸和短軸端點,
點P在橢圓上,F(xiàn)、E是橢圓的左、右焦點,EP∥AB,PF⊥OF,
∴△PFE∽△BOA,
EF
OA
=
PF
OB
,
2c
a
=
b2
a
b
,
∴b2=2bc,b=2c,
∴a2=b2+c2=5c2,a=
5
c,
∴e=
c
a
=
5
5

故選A.
點評:本題考查橢圓的性質(zhì)和應用,解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知如圖,A、B是橢圓
x24
+y2=1
的左、右頂點,直線x=t(-2<t<2)交橢圓于M、N兩點,經(jīng)過A、M、N的圓的圓心為C1,經(jīng)過B、M、N的圓的圓心為C2
(1)求證|C1C2|為定值;
(2)求圓C1與圓C2的面積之和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•惠州模擬)如圖,A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0))的兩個頂點.|AB|=
5
,直線AB的斜率為-
1
2

(Ⅰ)求橢圓的方程;
(Ⅱ)設直線l平行于AB,與x,y軸分別交于點M,N,與橢圓相交于C,D.證明:△OCM的面積等于△0DN的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,橢圓C的離心率為
1
2
,右準線l的方程為x=4.
(I)求橢圓的方程;
(II)設M是橢圓C上異于A,B的一點,直線AM交l于點P,以MP為直徑的圓記為⊙k.
(i)若M恰好是橢圓C的上頂點,求⊙k截直線PB所得的弦長;
(ii)設⊙k與直線MB交于點Q,試證明:直線PQ與x軸的交點R為定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點,M是橢圓上異于A,B的任意一點,若橢圓C的離心率為
1
2
,且右準線l的方程為x=4.
(1)求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交直線MB于點Q,試證明:直線PQ與x軸的交點R為定點,并求出R點的坐標.

查看答案和解析>>

同步練習冊答案