分析 l過(0,1)點,當l過圓心時,|AB|取最大值,當l和過(0,1)的直徑垂直時,|AB|取最小值.
解答 解:由題意,l過(0,1)點,
當l過圓心時,|AB|取最大值,即圓的直徑,
由M:x2+y2-2x-4=0的半徑r=$\sqrt{5}$,故|AB|的最大值為2$\sqrt{5}$,
當l和過(0,1)的直徑垂直時,|AB|取最小值.
此時圓心M(1,0)到(0,1)的距離d=$\sqrt{2}$,|AB|=2$\sqrt{5-2}$=2$\sqrt{3}$,
故|AB|的最小值為2$\sqrt{3}$.
故答案為:2$\sqrt{5}$,2$\sqrt{3}$.
點評 本題考查的知識點是直線與圓的位置關(guān)系,轉(zhuǎn)化思想,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -120 | B. | 120 | C. | -45 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tan(-$\frac{2π}{7}$)>tan(-$\frac{π}{5}$) | B. | tan(-$\frac{2π}{7}$)<tan(-$\frac{π}{5}$) | C. | tan(-$\frac{2π}{7}$)=tan(-$\frac{π}{5}$) | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$-1 | D. | $\frac{π}{4}$-$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com