【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構為了調查人們對此種交通方式的滿意度,從交通擁堵不嚴重的城市和交通擁堵嚴重的城市分別隨機調查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):
若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認為城市擁堵與認可共享單車有關:
合計 | |||
認可 | |||
不認可 | |||
合計 |
附:參考數(shù)據(jù):(參考公式:)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中數(shù)學 來源: 題型:
【題目】以下四個命題中是假命題的是
A. “昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理.
B. “在平面中,對于三條不同的直線, , ,若, 則,將此結論放到空間中也成立” 此推理屬于合情推理.
C. “”是“函數(shù) 存在極值”的必要不充分條件.
D. 若,則的最小值為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點, 是上任意一點.
(1)求證: ;
(2)已知二面角的余弦值為,若為的中點,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負半軸為極軸建立極坐標系.
(1)分別求直線和圓的極坐標方程;
(2)射線(其中)與圓交于兩點,與直線交于點,射線與圓交于兩點,與直線交于點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過橢圓: 上一點向軸作垂線,垂足為右焦點, 、分別為橢圓的左頂點和上頂點,且, .
(Ⅰ)求橢圓的方程;
(Ⅱ)若動直線與橢圓交于、兩點,且以為直徑的圓恒過坐標原點.問是否存在一個定圓與動直線總相切.若存在,求出該定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產某種產品的月固定成本為10(萬元),每生產件,需另投入成本為(萬元).當月產量不足30件時, (萬元);當月產量不低于30件時, (萬元).因設備問題,該廠月生產量不超過50件.現(xiàn)已知此商品每件售價為5萬元,且該廠每個月生產的商品都能當月全部銷售完.
(1)寫出月利潤(萬元)關于月產量(件)的函數(shù)解析式;
(2)當月產量為多少件時,該廠所獲月利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,點是直線上的動點,過作直線, ,線段的垂直平分線與交于點.
(1)求點的軌跡的方程;
(2)若點是直線上兩個不同的點,且的內切圓方程為,直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若在區(qū)間上單調遞增,求實數(shù)的取值范圍;
(2)若存在唯一整數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某智能手機制作完成之后還需要依次通過三道嚴格的審核程序,第一道審核、第二道審核、第三道審核通過的概率分別為,,,每道程序是相互獨立的,且一旦審核不通過就停止審核,每部手機只有三道程序都通過才能出廠銷售.
(1)求審核過程中只通過兩道程序的概率;
(2)現(xiàn)有3部該智能手機進入審核,記這3部手機可以出廠銷售的部數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com