【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點(diǎn), 上任意一點(diǎn).

(1)求證: ;

(2)已知二面角的余弦值為,若的中點(diǎn),求與平面所成角的正弦值.

【答案】(1)證明見解析;(2

【解析】試題分析:(1)線線垂直問題轉(zhuǎn)化為線面問題即可解決,即 ,由平面,得,又分析可知,且,所以2)解法1:(空間向量在立體幾何中的應(yīng)用)設(shè)與平面所成的角為,即與平面所成角為與平面的法向量所成角,如圖所示的空間直角坐標(biāo)系,

設(shè),

平面的一個(gè)法向量為1,0,0),,得到

再由二面角的余弦值為,解得,

,最后求得;

解法2:通過構(gòu)造法作出二面角的平面角,

設(shè)DP=t, 作出二面角的平面角,

,求出點(diǎn)到平面的距離

試題解析:(1)因?yàn)?/span>平面,所以, 1

因?yàn)樗倪呅?/span>為菱形,所以2

因?yàn)?/span>5

2)解法1:

連接中,

所以分別以所在直線為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系,

設(shè)6

由(1)知,平面的一個(gè)法向量為1,0,0), 設(shè)平面的一個(gè)法向量為,則,令,得8

因?yàn)槎娼?/span>的余弦值為,所以,

解得(舍去),所以10

設(shè)與平面所成的角為.因?yàn)?/span>, ,

所以與平面所成角的正弦值為12

解法2:

設(shè)DP=t, 作出二面角的平面角

,求出點(diǎn)到平面的距離

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形均為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),以為直徑的圓經(jīng)過點(diǎn), , 的中點(diǎn)為, 的中點(diǎn)為,且

(Ⅰ)求證:平面平面;

(Ⅱ)求幾何體的體積. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布

(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在

之外的零件數(shù),求;

(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查.

下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得 ,其中為抽取的第個(gè)零件的尺寸,

用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)(精確到0.01).

附:若隨機(jī)變量服從正態(tài)分布,則,

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)用定義證明函數(shù)上是增函數(shù);

(2)探究是否存在實(shí)數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由;

3)在(2)的條件下,解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購進(jìn)了該農(nóng)產(chǎn)品.以)表示下一個(gè)銷售季度內(nèi)的市場需求量, (單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(Ⅰ)將表示為的函數(shù);

(Ⅱ)根據(jù)直方圖估計(jì)利潤不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次電影展映活動(dòng)中,展映的影片有科幻片和文藝片兩種類型,統(tǒng)計(jì)一隨機(jī)抽樣調(diào)查的樣本數(shù)據(jù)顯示,100名男性觀眾中選擇科幻片的有60名,女性觀眾中有的選擇文藝片,選擇文藝片的觀眾中男性觀眾和女性觀眾一樣多.

(Ⅰ)根據(jù)以上數(shù)據(jù)完成下列列聯(lián)表

(Ⅱ)能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為選擇影片類型與性別有關(guān)?

附:

0.10

0.05

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:

)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績?cè)陬l率分布直方圖中各段是均勻分布的)

)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從()中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望.

(附參考公式)若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的城市和交通擁堵嚴(yán)重的城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此列聯(lián)表,并據(jù)此樣本分析是否有的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān):

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在測試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測試,共5道客觀題.測試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

學(xué)生編號(hào) 題號(hào)

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測的答對(duì)人數(shù)及相應(yīng)的實(shí)測難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測答對(duì)人數(shù);

題號(hào)

1

2

3

4

5

實(shí)測答對(duì)人數(shù)

實(shí)測難度

(Ⅱ)從編號(hào)為155人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

Ⅲ)定義統(tǒng)計(jì)量,其中為第題的實(shí)測難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.

查看答案和解析>>

同步練習(xí)冊(cè)答案