已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
(Ⅲ)求證:,e是自然對(duì)數(shù)的底數(shù)).

(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(Ⅱ)實(shí)數(shù)a的取值范圍是;(Ⅲ)詳見(jiàn)解析.

解析試題分析:(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間,即判斷在各個(gè)區(qū)間上的符號(hào),只需對(duì)求導(dǎo)即可;(Ⅱ)當(dāng)時(shí),不等式恒成立,即恒成立,令 (),只需求出最大值,讓最大值小于等于零即可,可利用導(dǎo)數(shù)求最值,從而求出的取值范圍;(Ⅲ)要證成立,即證,即證
,由(Ⅱ)可知當(dāng)時(shí),上恒成立,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d4/5/zu5a22.png" style="vertical-align:middle;" />,從而證出.
試題解析:(Ⅰ)當(dāng)時(shí),),(1分)
),(2分)
解得,由解得,
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(3分)
(Ⅱ)因當(dāng)時(shí),不等式恒成立,即恒成立,設(shè) (),只需即可. (4分)
, (5分)
(。┊(dāng)時(shí),,當(dāng)時(shí),,函數(shù)上單調(diào)遞減,
 成立;(6分)
(ⅱ)當(dāng)時(shí),由,因,所以,
①若,即時(shí),在區(qū)間上,,則函數(shù)上單調(diào)遞增, 上無(wú)最大值(或:當(dāng)時(shí),),此時(shí)不滿足條件;
②若,即時(shí),函數(shù)上單調(diào)遞減,在區(qū)間上單調(diào)遞增,同樣 在上無(wú)最大值,不滿足條件 ;(8分)
(ⅲ)當(dāng)時(shí),由,∵,∴
,故函數(shù)上單調(diào)遞減,故成立.
綜上所述,實(shí)數(shù)a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時(shí),求曲線處的切線方程;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在上存在一點(diǎn),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x-ln(x+a)的最小值為0,其中a>0.
(1)求a的值;
(2)若對(duì)任意的x∈[0,+∞),有f(x)≤kx2成立,求實(shí)數(shù)k的最小值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是R上的奇函數(shù),當(dāng)時(shí)取得極值.
(I)求的單調(diào)區(qū)間和極大值
(II)證明對(duì)任意不等式恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是二次函數(shù),不等式的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然數(shù)m,使得方程=0在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出所有m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù), 上為增函數(shù),且,求解下列各題:
(1)求的取值范圍;
(2)若上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),
(Ⅰ)若,求的極小值;
(Ⅱ)在(Ⅰ)的結(jié)論下,是否存在實(shí)常數(shù),使得?若存在,求出的值.若不存在,說(shuō)明理由.
(Ⅲ)設(shè)有兩個(gè)零點(diǎn),且成等差數(shù)列,試探究值的符號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f (1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

己知函數(shù) .
(I)若是,的極值點(diǎn),討論的單調(diào)性;
(II)當(dāng)時(shí),證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案