6.已知不共線的兩個向量$\overrightarrow a\;\;,\;\;\overrightarrow b$滿足$|{\overrightarrow a-\overrightarrow b}|=3$且$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,則$|{\overrightarrow b}|$=( 。
A.3B.4C.$2\sqrt{2}$D.$2\sqrt{3}$

分析 由$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,得到${\overrightarrow{a}}^{2}-2\overrightarrow{a}\overrightarrow=0$,從而對|$\overrightarrow{a}$-$\overrightarrow$|=3兩邊平方便可得到${\overrightarrow}^{2}=9$,這樣可得出$|{\overrightarrow b}|$的值.

解答 解:∵$\overrightarrow a⊥({\overrightarrow a-2\overrightarrow b})$,
∴$\overrightarrow{a}•(\overrightarrow{a}-2\overrightarrow)={\overrightarrow{a}}^{2}-2\overrightarrow{a}\overrightarrow=0$.
∴|$\overrightarrow{a}$-$\overrightarrow$|2=${\overrightarrow{a}}^{2}-2\overrightarrow{a}\overrightarrow+{\overrightarrow}^{2}={\overrightarrow}^{2}=9$.
∴$|{\overrightarrow b}|$=3.
故選:A.

點評 本題考查了向量垂直的充要條件,以及向量的數(shù)量積的運算及計算公式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.由8個面圍成的幾何體,每個面都是正三角形,并且有四個頂點A,B,C,D在同一平面上,ABCD是邊長為15的正方形,則該幾何體的外接球的體積為( 。
A.1125$\sqrt{2}$πB.3375$\sqrt{2}$πC.450πD.900π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知平面α∩平面β=l,直線m?α,且m∩l=P,則( 。
A.β內(nèi)必存在直線與m平行,存在直線與m垂直
B.β內(nèi)必不存在直線與m平行,必存在直線與m垂直
C.β內(nèi)必不存在直線與m平行,且不存在直線與m垂直
D.β內(nèi)必存在直線與m平行,不存在直線與m垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.$\frac{{tan{{12}°}+tan{{18}°}}}{{1-tan{{12}°}•tan{{18}°}}}$=( 。
A.1B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若滿足x,y約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=x+y的最大值為(  )
A.$\frac{3}{2}$B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知焦點在y軸上的雙曲線C的中心是原點O,離心率等于$\frac{{\sqrt{5}}}{2}$,以雙曲線C的一個焦點為圓心,2為半徑的圓與雙曲線C的漸近線相切,則雙曲線C的方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{y^2}{4}-{x^2}=1$C.${y^2}-\frac{x^2}{4}=1$D.$\frac{y^2}{16}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從裝有紅球、白球和黑球各2個的口袋內(nèi)一次取出2個球,則與事件“兩球都為白球”互斥而非對立的事件是以下事件“①兩球都不是白球;②兩球恰有一白球;③兩球至少有一個白球;④兩球至多有一個白球”中的哪幾個?( 。
A.①②④B.①②③C.①③D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sin2α-2=2cos2α,則sin2α+sin2α=1或$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.實驗測得四組數(shù)對(x,y)的值為(1,2),(2,5),(4,7),(5,10),則y與x之間的回歸直線方程可能是( 。
A.$\hat y=x+3$B.$\hat y=x+4$C.$\hat y=2x+3$D.$\hat y=2x+4$

查看答案和解析>>

同步練習(xí)冊答案