4.若log6a=log7b,則a、b、1的大小關系可能是( 。
A.a>b>1B.b>1>aC.a>1>bD.1>a>b

分析 利用換底公式、對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:log6a=log7b,∴$\frac{lga}{lg6}=\frac{lgb}{lg7}$,∴1<a<b,或0<b<a<1.
故選:D.

點評 本題考查了換底公式、對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>1\\ 2+{16^x},x≤1\end{array}\right.$,則$f(f(\frac{1}{4}))$=(  )
A.-2B.4C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設x,y滿足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}$,若目標函數(shù)z=2x+y的最大值為M,則式子2${\;}^{lo{g}_{2}M}$+log2M的值為11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知兩點F1(-1,0)、F2(1,0),若|F1F2|是|PF1|與|PF2|的等差中項,則動點P的軌跡方程是( 。
A.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知某8個數(shù)據(jù)的平均數(shù)為5,方差為3,現(xiàn)又加入一個新數(shù)據(jù)5,此時這9個數(shù)據(jù)的方差為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)f(x)=-$\frac{1}{3}$x3+4x-1在[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≤0}\\{y≥2}\end{array}\right.$,則z=2x-y的最小值等于( 。
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設焦點在x軸上的雙曲線虛軸長為2,焦距為$2\sqrt{3}$,則雙曲線的漸近線方程為( 。
A.$y=±\sqrt{2}x$B.y=±2xC.$y=±\frac{{\sqrt{2}}}{2}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.f(n)=$\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}$+…$\frac{1}{n^2}$則( 。
A.f(n)中有n項,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$B.f(n)中有n+1項,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$
C.f(n)中有n2+n+1項,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$D.f(n)中有n2-n+1項,且f(2)=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$

查看答案和解析>>

同步練習冊答案